Crosstalk Between ER Stress, Unfolded Protein Response (UPR) and Wnt Signaling Pathway in Cancer

Document Type : Research/Original Article

Authors

1 Department of biochemistry, Shiraz University of medical sciences, Shiraz, Iran

2 Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 Autophagy Research center, Shiraz University of Medical Sciences, shiraz, Iran.

Abstract

Abstract:
1. Context
Endoplasmic reticulum stress (ER stess) is associated with endoplasmic reticulum perturbation homeostasis. Prolonged ER stress conditions may induce cell death. Unfolded protein response (UPR) attempts to restore normal cell conditions.
2. Evidence Acquisition
There now exists an emergent body of evidence identifying the WNT signaling network as a regulator of cancer cell metabolism. Given that existing findings show that the WNT pathway and ER stress regulates changes in metabolic activities of cancer cells suggesting these signaling pathways represent critical nodes in the regulation of central metabolism in tumors.
3. Results
Findings suggest that the molecular cross-talks between hypoxic ER stress, Wnt/βcatenin signaling, may represent an important mechanism that enables some tumor subtypes to survival and grow in hypoxic conditions.
4. Conclusions
The present article disuses differential effects of the activation of the three arms of UPR, namely endoplasmic reticulum kinase (PERK), activation transcription factor -6 (ATF-6), and inositol –requiring enzyme (IRE-1) on cancer. This review also highlights regulators and downstream effectors of Wnt cascade and addresses the increasingly apparent crosstalk of Wnt with other tumorigenic signaling pathways.

Keywords


1.            Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS. The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer research. 2007;67(20):9809-16.
2.            Buontempo F, Orsini E, Martins LR, Antunes I, Lonetti A, Chiarini F, et al. Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling. Leukemia. 2014;28(3):543-53.
3.            Raab MS, Breitkreutz I, Tonon G, Zhang J, Hayden PJ, Nguyen T, et al. Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling. Blood. 2009;113(7):1513-21.
4.            Ozgur R, Uzilday B, Iwata Y, Koizumi N, Turkan I. Interplay between unfolded protein response and reactive oxygen species: a dynamic duo. Journal of experimental botany. 2018:ery040.
5.            Manalo RVM, Medina PMB. The endoplasmic reticulum stress response in disease pathogenesis and pathophysiology. Egyptian Journal of Medical Human Genetics. 2017.
6.            Schröder M. Endoplasmic reticulum stress responses. Cellular and molecular life sciences. 2008;65(6):862-94.
7.            Kapoor A, Sanyal AJ. Endoplasmic reticulum stress and the unfolded protein response. Clinics in liver disease. 2009;13(4):581-90.
8.            Salminen A, Kaarniranta K. ER stress and hormetic regulation of the aging process. Ageing research reviews. 2010;9(3):211-7.
9.            Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature reviews Drug discovery. 2008;7(12):1013.
10.          Kim SR, Lee YC. Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy, asthma & immunology research. 2015;7(2):106-17.
11.          Kelsen SG. The unfolded protein response in chronic obstructive pulmonary disease. Annals of the American Thoracic Society. 2016;13(Supplement 2):S138-S45.
12.          Wang M, Wey S, Zhang Y, Ye R, Lee AS. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxidants & redox signaling. 2009;11(9):2307-16.
13.          Regulation H. The Unfolded Protein Response: From Stress Pathway to. science. 2011;1209038(1081):334.
14.          Lindholm D, Korhonen L, Eriksson O, Kõks S. Recent insights into the role of unfolded protein response in ER stress in health and disease. Frontiers in cell and developmental biology. 2017;5:48.
15.          Senft D, Ze’ev AR. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends in biochemical sciences. 2015;40(3):141-8.
16.          Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nature Reviews Nephrology. 2017;13(11):681.
17.          Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nature reviews Molecular cell biology. 2007;8(7):519.
18.          Doultsinos D, Avril T, Lhomond S, Dejeans N, Guédat P, Chevet E. Control of the unfolded protein response in health and disease. SLAS DISCOVERY: Advancing Life Sciences R&D. 2017;22(7):787-800.
19.          Gopal U, Pizzo SV. The Endoplasmic Reticulum Chaperone GRP78 Also Functions as a Cell Surface Signaling Receptor.  Cell Surface GRP78, a New Paradigm in Signal Transduction Biology: Elsevier; 2018. p. 9-40.
20.          Corazzari M, Gagliardi M, Fimia GM, Piacentini M. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Frontiers in oncology. 2017;7:78.
21.          Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress–activated cell reprogramming in oncogenesis. Cancer discovery. 2015;5(6):586-97.
22.          Raven JF, Baltzis D, Wang S, Mounir Z, Papadakis AI, Gao HQ, et al. PKR and PKR-like endoplasmic reticulum kinase induce the proteasome-dependent degradation of cyclin D1 via a mechanism requiring eukaryotic initiation factor 2α phosphorylation. Journal of Biological Chemistry. 2008;283(6):3097-108.
23.          Molina-Ruiz FJ, González R, Rodríguez-Hernández MA, Navarro-Villarán E, Padillo FJ, Muntané J. Antitumoral activity of Sorafenib in hepatocellular Carcinoma: effects on cell survival and death pathways, cell metabolism reprogramming, and on nitrosative and oxidative str. Critical Reviews™ in Oncogenesis.
24.          McQuiston A, Diehl JA. Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum. F1000Research. 2017;6.
25.          Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 signaling affects cell fate during the unfolded protein response. science. 2007;318(5852):944-9.
26.          Lin JH, Li H, Zhang Y, Ron D, Walter P. Divergent effects of PERK and IRE1 signaling on cell viability. PloS one. 2009;4(1):e4170.
27.          Rahmati M, Amanpour S, Kharman-Biz A, Moosavi MA. Endoplasmic Reticulum Stress as a Therapeutic Target in Cancer: A mini review. Basic & Clinical Cancer Research. 2017;9(2):38-48.
28.          Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, et al. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer research. 2007;67(14):6700-7.
29.          Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends in biochemical sciences. 2014;39(5):245-54.
30.          Agostinis P, Afshin S. Endoplasmic reticulum stress in health and disease: Springer Science & Business Media; 2012.
31.          Nadanaka S, Okada T, Yoshida H, Mori K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Molecular and cellular biology. 2007;27(3):1027-43.
32.          Yuan K, He H-H, Zhang C-Z, Li X-Y, Weng S-P, He J-G, et al. Litopenaeus vannamei activating transcription factor 6 alpha gene involvement in ER-stress response and white spot symptom virus infection. Fish & shellfish immunology. 2017;70:129-39.
33.          Forouhan M, Mori K, Boot-Handford R. Paradoxical roles of ATF6α and ATF6β in modulating disease severity caused by mutations in collagen X. Matrix Biology. 2018.
34.          Li X, Zhang K, Li Z. Unfolded protein response in cancer: the physician's perspective. Journal of hematology & oncology. 2011;4(1):8.
35.          Yorimitsu T, Nair U, Yang Z, Klionsky DJ. ER stress triggers autophagy. Journal of Biological Chemistry. 2006.
36.          Gaist D, Andersen L, Hallas J, Sørensen HT, Schrøder H, Friis S. Use of statins and risk of glioma: a nationwide case–control study in Denmark. British journal of cancer. 2013;108(3):715.
37.          Yan Y, Xu Z, Dai S, Qian L, Sun L, Gong Z. Targeting autophagy to sensitive glioma to temozolomide treatment. Journal of experimental & clinical cancer research. 2016;35(1):23.
38.          Clarke R, Cook KL, Hu R, Facey CO, Tavassoly I, Schwartz JL, et al. Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. Cancer research. 2012;72(6):1321-31.
39.          Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature cell biology. 2000;2(6):326.
40.          Verfaillie T, Garg AD, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer letters. 2013;332(2):249-64.
41.          Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annual Review of Pathology: Mechanisms of Disease. 2015;10:173-94.
42.          Wang Y, Wang JH, Zhang XL, Wang XL, Yang L. Endoplasmic reticulum chaperone glucose-regulated protein 78 in gastric cancer: An emerging biomarker. Oncology Letters.
43.          Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. science. 2011;334(6059):1081-6.
44.          Corazzari M, Rapino F, Ciccosanti F, Giglio P, Antonioli M, Conti B, et al. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy and apoptotic resistance of cutaneous melanoma. Cell death and differentiation. 2015;22(6):946.
45.          Hill DS, Lovat PE, Haass NK. Induction of endoplasmic reticulum stress as a strategy for melanoma therapy: is there a future? Melanoma Management. 2014;1(2):127-37.
46.          Gottesman MM. Mechanisms of cancer drug resistance. Annual review of medicine. 2002;53(1):615-27.
47.          Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nature Reviews Cancer. 2013;13(10):714.
48.          Longley D, Johnston P. Molecular mechanisms of drug resistance. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2005;205(2):275-92.
49.          Fu Y, Li J, Lee AS. GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation–induced apoptosis. Cancer research. 2007;67(8):3734-40.
50.          Hu R, Warri A, Jin L, Zwart A, Riggins RB, Clarke R. NFκB Signaling is required for XBP1 (U and S) Mediated Effects on Antiestrogen Responsiveness and Cell Fate Decisions in Breast Cancer. Molecular and cellular biology. 2014:MCB. 00847-14.
51.          Yeung B, Kwan B, He Q, Lee A, Liu J, Wong A. Glucose-regulated protein 78 as a novel effector of BRCA1 for inhibiting stress-induced apoptosis. Oncogene. 2008;27(53):6782.
52.          Fujimoto A, Kawana K, Taguchi A, Adachi K, Sato M, Nakamura H, et al. Inhibition of endoplasmic reticulum (ER) stress sensors sensitizes cancer stem-like cells to ER stress-mediated apoptosis. Oncotarget. 2016;7(32):51854.
53.          Ranganathan AC, Adam AP, Zhang L, Aguirre-Ghiso JA. Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer biology & therapy. 2006;5(7):729-35.
54.          Pi L, Li X, Song Q, Shen Y, Lu X, Di B. Knockdown of glucose‑regulated protein 78 abrogates chemoresistance of hypopharyngeal carcinoma cells to cisplatin induced by unfolded protein in response to severe hypoxia. Oncology Letters. 2014;7(3):685-92.
55.          Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer research. 2007;67(8):3496-9.
56.          Visioli F, Wang Y, Alam GN, Ning Y, Rados PV, Nör JE, et al. Glucose-regulated protein 78 (Grp78) confers chemoresistance to tumor endothelial cells under acidic stress. PloS one. 2014;9(6):e101053.
57.          Piton N, Wason J, Colasse É, Cornic M, Lemoine F, Le Pessot F, et al. Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Archiv. 2016;469(2):145-54.
58.          Carson BB, Sciences CUWCGSoM. Perk Dependent Inhibition of Wnt Signaling by the Unfolded Protein Response: Cornell University; 2015.
59.          Fels DR, Koumenis C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther. 2006;5(7):723-8.
60.          Xia Z, Wu S, Wei X, Liao Y, Yi P, Liu Y, et al. Hypoxic ER stress suppresses beta-catenin expression and promotes cooperation between the transcription factors XBP1 and HIF1alpha for cell survival. The Journal of biological chemistry. 2019;294(37):13811-21.
61.          Graner AN, Hellwinkel JE, Lencioni AM, Madsen HJ, Harland TA, Marchando P, et al. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group. 2017;33(3):303-17.
62.          Gao Y, Wang HY. Casein kinase 2 Is activated and essential for Wnt/beta-catenin signaling. The Journal of biological chemistry. 2006;281(27):18394-400.
63.          Cruciat CM. Casein kinase 1 and Wnt/beta-catenin signaling. Current opinion in cell biology. 2014;31:46-55.
64.          Manni S, Carrino M, Piazza F. Role of protein kinases CK1α and CK2 in multiple myeloma: regulation of pivotal survival and stress-managing pathways. Journal of Hematology & Oncology. 2017;10(1):157.
65.          Hosoi T, Korematsu K, Horie N, Suezawa T, Okuma Y, Nomura Y, et al. Inhibition of casein kinase 2 modulates XBP1-GRP78 arm of unfolded protein responses in cultured glial cells. PLoS One. 2012;7(6):e40144.
66.          Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A, et al. Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18(7):1888-900.
67.          Hetz C, Chevet E, Oakes SA. Proteostasis control by the unfolded protein response. Nat Cell Biol. 2015;17(7):829-38.