The Effects of Commercial Probiotics on Biological Properties of Enterococci in Colon Carcinoma Cell Culture

Document Type : Research/Original Article

Authors

Istanbul Yeni Yuzyil University, Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey

Abstract

The interactions between dysbiosis of gut microbiota and development of colorectal cancers are well known. The effects of three different commercial probiotics, purchased from pharmacies, on several biological properties of enterococci (vancomycin resistant “VRE” and vancomycin susceptible “VSE”) in colon adenocarcinoma cell culture (HT-29) were investigated. Cell-free supernatants (CFSs) were prepared after the isolation of probiotic strains (Bifidobacterium lactis, Saccharomyces boulardii and Bacillus clausii). Bacterial growth was detected spectrophotometrically after three, six and 24 hours incubation. Adhesion and invasion assays were performed via colony counting method. Biofilm formation was performed using microtiter plate assay. After 24 hours incubation in culture medium, all three probiotics increased the growth of VRE and VSE. Bacterial growth was also increased in cell culture in the presence of probiotics. Adhesion of both enterococci was shown to be reduced by all probiotics. The invasion and biofilm formation were shown to be varied according to strains and probiotics tested. As conclusion, all of these findings indicate the potential risk of enhanced pathogenicity under certain circumstances, especially in immune suppression.

Highlights

Defne Gümüş (Google Scholar)

Keywords


1. De Almeida CV, Lulli M, Di Pilato
V, Schiavone N, Russo E, Nannini
G, et al. Differential Responses
of Colorectal Cancer Cell lines
to Enterococcus Faecalis’ Strains
Isolated from Healthy Donors and
Colorectal Cancer Patients. J Clin
Med. 2019;8(3).
2. Geravand M, Fallah P, Yaghoobi MH,
Soleimanifar F, Farid M, Zinatizadeh
N, et al. Investigation of enterococcus
faecalis population in patients with
polyp and colorectal cancer in
comparison of healthy individuals.
Arq Gastroenterol. 2019;56(2):141–5.
3. Pericàs JM, Ambrosioni J, Muñoz P,
de Alarcón A, Kestler M, Mari-Hualde
A, et al. Prevalence of Colorectal
Neoplasms Among Patients With
Enterococcus faecalis Endocarditis
in the GAMES Cohort (2008–2017).
Mayo Clin Proc. 2021;96(1):132–46.
4. Sears CL, Garrett WS. Microbes,
microbiota, and colon cancer. Cell Host
Microbe [Internet]. 2014;15(3):317–
28. Available from: http://dx.doi.
org/10.1016/j.chom.2014.02.007
5. Huycke MM, Abrams V, Moore
DR. Enterococcus faecalis produces
extracellular superoxide and hydrogen
peroxide that damages colonic
epithelial cell DNA. Carcinogenesis.
2002;23(3):529–36.
6. Balamurugan R, Rajendiran E, George
S, Samuel GV, Ramakrishna BS.
Real-time polymerase chain reaction
quantification of specific butyrateproducing bacteria, Desulfovibrio
and Enterococcus faecalis in the feces
of patients with colorectal cancer. J
Gastroenterol Hepatol. 2008;23(8
PART1):1298–303.
7. Elahi Z, Shariati A, Bostanghadiri
N, Dadgar-Zankbar L, Razavi
S, Norzaee S, et al. Association
of Lactobacillus, Firmicutes,
Bifidobacterium, Clostridium, and
Enterococcus with colorectal cancer
in Iranian patients. Heliyon [Internet].
2023;9(12):e22602. Available from:
https://doi.org/10.1016/j.heliyon.2023.
e22602
8. Zamora Gonzales JA, Varadarajalu Y,
Liu S, Milikowski C. Enterococcus
Bacteremia A Manifestation ofColon
Cancer? Infect Dis Clin Pract.
2018;26(6):e91–2.
9. De Almeida CV, Taddei A, Amedei A.
The controversial role of Enterococcus
faecalis in colorectal cancer. Ther Adv
Gastroenterol Rev. 2018;11(6):1–11.
10. Wang X, Allen TD, May RJ, Lightfoot
S, Houchen CW, Huycke MM.
Enterococcus faecalis Induces A
neuploidy and Tetraploidy in Colonic
Epithelial Cells through a Bystander
Effect. Cancer Res [Internet].
2008;68(23):9909–17. Available
from: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC3624763/pdf/
nihms412728.pdf
11. Zhang L, Liu J, Deng M, Chen X,
Jiang L, Zhang J, et al. Enterococcus
faecalis promotes the progression of
colorectal cancer via its metabolite:
biliverdin. J Transl Med [Internet].
2023;21(1):1–14. Available
from: https://doi.org/10.1186/
s12967-023-03929-7
12. Sobhani I, Tap J, Roudot-Thoraval F,
Roperch JP, Letulle S, Langella P, et
al. Microbial dysbiosis in colorectal
cancer (CRC) patients. PLoS One.
2011;6(1).
13. Marchesi JR, Dutilh BE, Hall N,
Peters WHM, Roelofs R, Boleij A,
et al. Towards the human colorectal
cancer microbiome. PLoS One.
2011;6(5).
14. Boleij A, Tjalsma H. Gut bacteria
in health and disease: A survey on
the interface between intestinal
microbiology and colorectal cancer. Biol Rev. 2012;87(3):701–30.
15. Kostic AD, Chun E, Meyerson
M, Garrett WS. Microbes and
inflammation in colorectal cancer.
Cancer Immunol Res. 2013;1(3):150–7.
16. Schwabe RF, Jobin C. The
microbiome and cancer. Nat Rev
Cancer. 2013;13(11):800–12.
17. Viljoen KS, Dakshinamurthy
A, Goldberg P, Blackburn JM.
Quantitative profiling of colorectal
cancer-associated bacteria
reveals associations between
Fusobacterium spp., enterotoxigenic
Bacteroides fragilis (ETBF) and
clinicopathological features of
colorectal cancer. PLoS One.
2015;10(3):1–21.
18. Tytgat HLP, Douillard FP, Reunanen J,
Rasinkangas P, Hendrickx APA, Laine
PK, et al. Lactobacillus rhamnosus GG
Outcompetes Enterococcus faecium
via Mucus-Binding Pili: Evidence for
a Novel and Heterospecific Probiotic
Mechanism. Appl Environ Microbiol.
2016;82(19):5756–62.
19. Felipe EMM, Fanny MJ, Isabela A,
Celia RG, Mariella VPL, Silvana
SFDS. Relationship between the
probiotic Lactobacillus rhamnosus
and Enterococcus faecalis during
the biofilm formation. African J
Microbiol Res. 2016;10(31):1182–6.
20. Safadi S, Maan H, Kolodkin-Gal I,
Tsesis I, Rosen E. The Products of
Probiotic Bacteria Effectively Treat
Persistent Enterococcus faecalis
Biofilms. Pharmaceutics. 2022;14(4).
21. Crouzet L, Derrien M, Cherbuy C,
Plancade S, Foulon M, Chalin B, et
al. Lactobacillus paracasei CNCM
I-3689 reduces vancomycin-resistant
Enterococcus persistence and
promotes Bacteroidetes resilience in
the gut following antibiotic challenge.
Sci Rep. 2018;8(1):1–11.
22. Kalaycı Yüksek F, Gümüş D,
Gündoğan Gİ, Anğ Küçüker M. CellFree Lactobacillus sp Supernatants
Modulate Staphylococcus aureus
Growth, Adhesion and Invasion to
Human Osteoblast (HOB) Cells. Curr
Microbiol. 2021;78(1):125–32.
23. Yuksek FK, Gumus D, Gundogan
GI, Ocal AU, Elagul N, Kucuker
MA. Cross-interactions between
Norepinephrine, MethicillinResistant Staphylococcus aureus
and Human Osteoblast Cells in
Culture Conditions. Experimed.
2022;12(2):85–93.
24. Castilho IG, Dantas STA, Langoni H,
Araújo JP, Fernandes A, Alvarenga
FCL, et al. Host-pathogen interactions
in bovine mammary epithelial cells
and HeLa cells by Staphylococcus
aureus isolated from subclinical
bovine mastitis. J Dairy Sci [Internet].
2017;100(8):6414–21. Available
from: http://dx.doi.org/10.3168/
jds.2017-12700
25. Artini M, Scoarughi GL, Papa R,
Cellini A, Carpentieri A, Pucci P, et
al. A new anti-infective strategy to
reduce adhesion-mediated virulence
in Staphylococcus aureus affecting
surface proteins. Int J Immunopathol
Pharmacol. 2011;24(3):661–72.
26. Kalaycı-Yüksek F, Gümüş D, Güler
V, Uyanık-Öcal A, Anğ-Küçüker
M. Progesterone and Estradiol alter
the growth, virulence and antibiotic
susceptibilities of Staphylococcus
aureus. New Microbiol.
2023;46(1):43–51.
27. Hu Y, Dun Y, Li S, Zhang D, Peng N,
Zhao S, et al. Dietary enterococcus
faecalis lab31 improves growth
performance, reduces diarrhea, and
increases fecal lactobacillus number
of weaned piglets e0116635. PLoS
One. 2015;10(1):1–16.
28. Shaaban S, Hamad GM, Genena S,
Meheissen MA, Moussa S. Evaluation
of the antibacterial activity of
Lactobacilli probiotics supernatants
against Enterococcus faecalis (in-vitro
study). BMC Oral Health [Internet].
2022;22(1):1–11. Available from: https://
doi.org/10.1186/s12903-022-02434-5
29. Plaza-Diaz J, Gomez-Llorente C,
Fontana L, Gil A. Modulation of
immunity and inflammatory gene
expression in the gut, in inflammatory
diseases of the gut and in the liver
by probiotics. World J Gastroenterol.
2014;20(42):15632–49.
30. Zendeboodi F, Khorshidian N,
Mortazavian AM, da Cruz AG.
Probiotic: conceptualization from
a new approach. Curr Opin Food
Sci [Internet]. 2020;32(April):103–
23. Available from: https://doi.
org/10.1016/j.cofs.2020.03.009
31. Byappanahalli MN, Nevers
MB, Korajkic A, Staley ZR,
Harwood VJ. Enterococci in the
Environment. Microbiol Mol Biol
Rev. 2012;76(4):685–706.
32. Fisher K, Phillips C. The ecology,
epidemiology and virulence of
Enterococcus. Microbiology.
2009;155(6):1749–57.
33. Rai P, Kochhar R, Kumari M.
Antimicrobial activity of three
different Probiotic strains and
5.25% Sodium hypochlorite
against E.faecalis and C.albicans
at two different time period: An
in-vitro study. Int J Sci Res Publ.
2019;9(4):p8879.
34. Kalayci Yüksek F, Gümüş D,
Bayirli Turan Dbt, Nakipoğlu Y,
Adaleti R, Küçüker Am. Cell-free
supernatants of lactobacilli inhibit
methicilin-resistant Staphylococcus
aureus, vancomycin-resistant
Enterococcus and carbapenemresistant Klebsiella strains. Ege Tıp
Derg. 2021;60(4):332–9.
35. Fateminasab ZS, Shayestehpour
M, Zolfaghari MR. Evaluation of
Anti-bacterial, Anti-adenoviral,
and Apoptosis-inducing Activity
of Bacillus clausii Supernatant.
Jundishapur J Microbiol.
2023;16(1):1–7.
36. Wong-Chew RM, de Castro JAA,
Morelli L, Perez M, Ozen M.
Gut immune homeostasis: the
immunomodulatory role of Bacillus
clausii, from basic to clinical
evidence. Expert Rev Clin Immunol
[Internet]. 2022;18(7):717–29.
Available from: https://doi.org/10.10
80/1744666X.2022.2085559