Running Title: LV diastolic function and CAD severity

Document Type : Review Article

Authors

1 Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

4 Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

5 Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

6 Autophagy Research Center, Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

The coronavirus disease 2019 (COVID-19) pandemic threatened public health globally. Some patients who recover from the initial infection develop persistent symptoms and organ dysfunction for weeks or even months, called long COVID. Among multiple COVID-19-related complications, individuals may suffer from intrahepatic and extrahepatic complications principally mediated by ACE2 receptors. We reviewed PubMed, Google Scholar, and Web of Science manuscripts on underlying COVID-19-linked clinical relevance and potential pathogenesis of liver complications during short and long COVID with no time limitation. Liver impairment needs a large-scale and persistent follow-up as it may be multifactorial. During COVID-19, physicians must assess whether hepatopathy is associated with hepatic disorders, medications utilized for COVID-19 therapy, or viral antigenic outcomes progression to a complicated course. In the context of COVID-19, physicians report that potential pathophysiological approaches to hepatic failure in critical patients could lead to deep vein thrombosis, myocardial infarction, venous thromboembolism, and acute kidney injury. These complications might be either reversible or irreversible, with extended manifestations that mostly occur due to long COVID in the post-COVID era. Moreover, pre-existing cardiovascular and digestive tract problems correlate with adverse clinical outcomes and the highest fatality rate. Potential drug-disease interactions adversely influencing COVID-19 subjects and persistent comorbidities must also be considered. Besides the upshot of exiting hepatic-associated comorbidities, the effect of non-fatal and endothelial liver lesions on outcomes of COVID-19 patients remains elusive and must be investigated further. Measures to protect against hepatic toxicity should be considered when managing COVID-19 patients. 

Keywords


  1. Gabutti G, d’Anchera E, Sandri F, Savio M, Stefanati A. Coronavirus: update related to the current outbreak of COVID-19. Infectious diseases and therapy. 2020;9(2):241-53.
  2. Lai C-C, Shih T-P, Ko W-C, Tang H-J, Hsueh P-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents. 2020;55(3):105924.
  3. Zhang J, Garrett S, Sun J. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes & diseases. 2021;8(4):385-400.
  4. Omrani-Nava V, Maleki I, Ahmadi A, Moosazadeh M, Hedayatizadeh-Omran A, Roozbeh F, et al. Evaluation of hepatic enzymes changes and association with prognosis in COVID-19 patients. Hepatitis Monthly. 2020;20(4).
  5. Raveendran A, Jayadevan R, Sashidharan S. Long COVID: an overview. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2021;15(3):869-75.
  6. Greenhalgh T, Knight M, Buxton M, Husain L. Management of post-acute covid-19 in primary care. bmj. 2020;370.
  7. Nabavi N. Long covid: How to define it and how to manage it. British Medical Journal Publishing Group; 2020.
  8. Garg P, Arora U, Kumar A, Wig N. The” post-COVID” syndrome: How deep is the damage? Journal of medical virology. 2020.
  9. Raveendran A. Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria. Diabetes & Metabolic Syndrome. 2021;15(1):145.
  10. Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, et al. Positive RT-PCR test results in patients recovered from COVID-19. Jama. 2020;323(15):1502-3.
  11. Yu D, Du Q, Yan S, Guo X-G, He Y, Zhu G, et al. Liver injury in COVID-19: clinical features and treatment management. Virology Journal. 2021;18(1):1-9.
  12. Bangash MN, Patel J, Parekh D. COVID-19 and the liver: little cause for concern. The lancet Gastroenterology & hepatology. 2020;5(6):529.
  13. Uchida Y, Uemura H, Yamaba S, Hamada D, Tarumoto N, Maesaki S, et al. Significance of liver dysfunction associated with decreased hepatic CT attenuation values in Japanese patients with severe COVID-19. Journal of Gastroenterology. 2020;55(11):1098-106.
  14. Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M. COVID-19 and the liver. Journal of hepatology. 2020;73(5):1231-40.
  15. Merrill JT, Erkan D, Winakur J, James JA. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nature Reviews Rheumatology. 2020:1-9.
  16. Muriel P. Liver pathophysiology: therapies and antioxidants: Academic press; 2017.
  17. Nardo AD, Schneeweiss‐Gleixner M, Bakail M, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID‐ Liver International. 2021;41(1):20-32.
  18. Thiessen SE, Derese I, Derde S, Dufour T, Pauwels L, Bekhuis Y, et al. The role of autophagy in critical illness-induced liver damage. Scientific reports. 2017;7(1):1-12.
  19. Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nature Reviews Molecular Cell Biology. 2020;21(4):183-203.
  20. Dong D, Fan T-t, Ji Y-s, Yu J-y, Wu S, Zhang L. Spironolactone alleviates diabetic nephropathy through promoting autophagy in podocytes. International urology and nephrology. 2019;51(4):755-64.
  21. Li J, Fan J-G. Characteristics and mechanism of liver injury in 2019 coronavirus disease. Journal of clinical and translational hepatology. 2020;8(1):13.
  22. Alqahtani SA, Schattenberg JM. Liver injury in COVID-19: the current evidence. United European gastroenterology journal. 2020;8(5):509-19.
  23. Duan Z, Chen Y, Zhang J, Zhao J, Lang Z, Meng F, et al. Clinical characteristics and mechanism of liver injury in patients with severe acute respiratory syndrome. Zhonghua gan zang bing za zhi= Zhonghua ganzangbing zazhi= Chinese journal of hepatology. 2003;11(8):493-6.
  24. Temgoua MN, Endomba FT, Nkeck JR, Kenfack GU, Tochie JN, Essouma M. Coronavirus disease 2019 (COVID-19) as a multi-systemic disease and its impact in low-and middle-income countries (LMICs). SN Comprehensive Clinical Medicine. 2020:1-11.
  25. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA neurology. 2020;77(6):683-90.
  26. Kukla M, Skonieczna-Żydecka K, Kotfis K, Maciejewska D, Łoniewski I, Lara L, et al. COVID-19, MERS and SARS with concomitant liver injury—systematic review of the existing literature. Journal of clinical medicine. 2020;9(5):1420.
  27. Zarei M, Bose D, Nouri‐Vaskeh M, Tajiknia V, Zand R, Ghasemi M. Long‐term side effects and lingering symptoms post COVID‐19 recovery. Reviews in Medical Virology. 2022;32(3):e2289.
  28. Hu L-L, Wang W-J, Zhu Q-J, Yang L. Novel coronavirus pneumonia-related liver injury: etiological analysis and treatment strategy. Zhonghua gan zang bing za zhi= Zhonghua ganzangbing zazhi= Chinese journal of hepatology. 2020;28(2):97-9.
  29. Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856-60.
  30. Guan G-W, Gao L, Wang J-W, Wen X-J, Mao T-H, Peng S-W, et al. Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia. Zhonghua gan zang bing za zhi= Zhonghua ganzangbing zazhi= Chinese journal of hepatology. 2020;28(2):E002-E.
  31. Soares RO, Losada DM, Jordani MC, Évora P, Castro-e-Silva O. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. International journal of molecular sciences. 2019;20(20):5034.
  32. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine. 2020;46(4):586-90.
  33. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver international. 2020;40(5):998-1004.
  34. Wu T, Hu E, Ge X, Yu G. Open-source analytics tools for studying the COVID-19 coronavirus outbreak. MedRxiv. 2020.
  35. Zhao B, Ni C, Gao R, Wang Y, Yang L, Wei J, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein & cell. 2020;11(10):771-5.
  36. Ji D, Qin E, Xu J, Zhang D, Cheng G, Wang Y, et al. Implication of non-alcoholic fatty liver diseases (NAFLD) in patients with COVID-19: a preliminary analysis. J Hepatol. 2020;73(2):451-3.
  37. Durazo FA, Nicholas AA, Mahaffey JJ, Sova S, Evans JJ, Trivella JP, et al., editors. Post–Covid-19 Cholangiopathy—A New Indication for Liver Transplantation: A Case Report. Transplantation proceedings; 2021: Elsevier.
  38. Esposito I, Kubisova A, Stiehl A, Kulaksiz H, Schirmacher P. Secondary sclerosing cholangitis after intensive care unit treatment: clues to the histopathological differential diagnosis. Virchows Archiv. 2008;453(4):339-45.
  39. Leonhardt S, Veltzke-Schlieker W, Adler A, Schott E, Hetzer R, Schaffartzik W, et al. Trigger mechanisms of secondary sclerosing cholangitis in critically ill patients. Critical Care. 2015;19(1):1-12.
  40. Roth NC, Kim A, Vitkovski T, Xia J, Ramirez G, Bernstein D, et al. Post–COVID-19 cholangiopathy: a novel entity. Official journal of the American College of Gastroenterology| ACG. 2021;116(5):1077-82.
  41. Lagana SM, Kudose S, Iuga AC, Lee MJ, Fazlollahi L, Remotti HE, et al. Hepatic pathology in patients dying of COVID-19: a series of 40 cases including clinical, histologic, and virologic data. Modern Pathology. 2020;33(11):2147-55.
  42. Lax SF, Skok K, Zechner P, Kessler HH, Kaufmann N, Koelblinger C, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Annals of internal medicine. 2020;173(5):350-61.
  43. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell. 2011;146(3):408-20.
  44. Cottam EM, Whelband MC, Wileman T. Coronavirus NSP6 restricts autophagosome expansion. Autophagy. 2014;10(8):1426-41.
  45. Kindrachuk J, Ork B, Mazur S, Holbrook MR, Frieman MB, Traynor D, et al. Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrobial agents and chemotherapy. 2015;59(2):1088-99.
  46. He M, Shi X, Yang M, Yang T, Li T, Chen J. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Experimental neurology. 2019;311:15-32.
  47. Kim Y-M, Jung CH, Seo M, Kim EK, Park J-M, Bae SS, et al. mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Molecular cell. 2015;57(2):207-18.
  48. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell. 2008;30(2):214-26.
  49. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D, et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science. 2011;332(6035):1317-22.
  50. Sun J. The hypothesis that SARS-CoV-2 affects male reproductive ability by regulating autophagy. Medical hypotheses. 2020;143:110083.
  51. Gassen NC, Papies J, Bajaj T, Dethloff F, Emanuel J, Weckmann K, et al. Analysis of SARS-CoV-2-controlled autophagy reveals spermidine, MK-2206, and niclosamide as putative antiviral therapeutics. BioRxiv. 2020.
  52. Chau TN, Lee KC, Yao H, Tsang TY, Chow TC, Yeung YC, et al. SARS‐associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology. 2004;39(2):302-10.
  53. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv. 2020.
  54. Lai L, Chen J, Wang N, Zhu G, Duan X, Ling F. MiRNA-30e mediated cardioprotection of ACE2 in rats with Doxorubicin-induced heart failure through inhibiting cardiomyocytes autophagy. Life sciences. 2017;169:69-75.
  55. Schneider M, Ackermann K, Stuart M, Wex C, Protzer U, Schätzl HM, et al. Severe acute respiratory syndrome coronavirus replication is severely impaired by MG132 due to proteasome-independent inhibition of M-calpain. Journal of virology. 2012;86(18):10112-22.
  56. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497-506.
  57. Aoe T. Pathological aspects of COVID-19 as a conformational disease and the use of pharmacological chaperones as a potential therapeutic strategy. Frontiers in pharmacology. 2020;11:1095.
  58. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382(18):1708-20.
  59. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The lancet. 2020;395(10229):1054-62.
  60. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet. 2020;395(10234):1417-8.
  61. Rosa-Fernandes L, Lazari LC, Macedo-da-Silvia J, de Morais Gomes V, Machado RRG, dos Santos AF, et al. SARS-CoV-2 activates ER stress and Unfolded protein response. bioRxiv. 2021.
  62. Ogata M, Hino S-i, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy is activated for cell survival after endoplasmic ReticulumStress. Molecular and cellular biology. 2006;26(24):9220-31.
  63. Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy. 2007;3(3):285-7.
  64. Zhou Y, Zhang S, Dai C, Tang S, Yang X, Li D, et al. Quinocetone triggered ER stress-induced autophagy via ATF6/DAPK1-modulated mAtg9a trafficking. Cell biology and toxicology. 2016;32(2):141-52.
  65. B’chir W, Maurin A-C, Carraro V, Averous J, Jousse C, Muranishi Y, et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic acids research. 2013;41(16):7683-99.
  66. Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S, et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. Journal of Biological Chemistry. 2013;288(2):859-72.
  67. Zhang Z, Qian Q, Li M, Shao F, Ding W-X, Lira VA, et al. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy. 2021;17(8):1841-55.
  68. Rutkowski DT, Wu J, Back S-H, Callaghan MU, Ferris SP, Iqbal J, et al. UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Developmental cell. 2008;15(6):829-40.
  69. Chan C-P, Siu K-L, Chin K-T, Yuen K-Y, Zheng B, Jin D-Y. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. Journal of virology. 2006;80(18):9279-87.
  70. Versteeg GA, Van De Nes PS, Bredenbeek PJ, Spaan WJ. The coronavirus spike protein induces endoplasmic reticulum stress and upregulation of intracellular chemokine mRNA concentrations. Journal of virology. 2007;81(20):10981-90.
  71. Krähling V, Stein DA, Spiegel M, Weber F, Mühlberger E. Severe acute respiratory syndrome coronavirus triggers apoptosis via protein kinase R but is resistant to its antiviral activity. Journal of virology. 2009;83(5):2298-309.
  72. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Critical reviews in clinical laboratory sciences. 2020;57(6):389-99.
  73. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, Ruiz C, Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & growth factor reviews. 2020;54:62-75.
  74. Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunology letters. 2020;225:31.
  75. Joung JY, Cho JH, Kim YH, Choi SH, Son CG. A literature review for the mechanisms of stress‐induced liver injury. Brain and behavior. 2019;9(3):e01235.
  76. Freitas-Lopes MA, Mafra K, David BA, Carvalho-Gontijo R, Menezes GB. Differential location and distribution of hepatic immune cells. Cells. 2017;6(4):48.
  77. Ramachandran A, Jaeschke H. Oxidative stress and acute hepatic injury. Current opinion in toxicology. 2018;7:17-21.
  78. Waseem N, Chen P-H. Hypoxic hepatitis: a review and clinical update. Journal of clinical and translational hepatology. 2016;4(3):263.
  79. Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. The Lancet. 2007;369(9572):1553-64.
  80. Pan X, Zhou J, Chen Y, Xie X, Rao C, Liang J, et al. Classification, hepatotoxic mechanisms, and targets of the risk ingredients in traditional Chinese medicine-induced liver injury. Toxicology letters. 2020;323:48-56.
  81. Liu K, Li F, Lu J, Gao Z, Klaassen CD, Ma X. Role of CYP3A in isoniazid metabolism in vivo. Drug metabolism and pharmacokinetics. 2013:DMPK-13-NT-089.
  82. Shojaei S, Suresh M, Klionsky DJ, Labouta HI, Ghavami S. Autophagy and SARS-CoV-2 infection: A possible smart targeting of the autophagy pathway. Taylor & Francis; 2020.
  83. Zha BS, Wan X, Zhang X, Zha W, Zhou J, Wabitsch M, et al. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes. PloS one. 2013;8(3):e59514.
  84. Cao R, Hu Y, Wang Y, Gurley EC, Studer EJ, Wang X, et al. Prevention of HIV protease inhibitor-induced dysregulation of hepatic lipid metabolism by raltegravir via endoplasmic reticulum stress signaling pathways. Journal of Pharmacology and Experimental Therapeutics. 2010;334(2):530-9.
  85. Falcão MB, de Goes Cavalcanti LP, Filgueiras Filho NM, de Brito CAA. Case Report: Hepatotoxicity associated with the use of Hydroxychloroquine in a Patient with COVID-19. The American journal of tropical medicine and hygiene. 2020;102(6):1214.
  86. Brim H, Ashktorab H. Integrating microbiomics in cancer management. Nature Reviews Cancer. 2021:1-.
  87. McGrowder DA, Miller F, Anderson Cross M, Anderson-Jackson L, Bryan S, Dilworth L. Abnormal liver biochemistry tests and acute liver injury in COVID-19 patients: current evidence and potential pathogenesis. Diseases. 2021;9(3):50.
  88. Zhan K, Liao S, Li J, Bai Y, Lv L, Yu K, et al. Risk factors in patients with COVID-19 developing severe liver injury during hospitalisation. Gut. 2021;70(3):628-9.
  89. An Y-W, Song S, Li W-X, Chen Y-X, Hu X-P, Zhao J, et al. Liver function recovery of COVID-19 patients after discharge, a follow-up study. International journal of medical sciences. 2021;18(1):176.
  90. Holmes E, Wist J, Masuda R, Lodge S, Nitschke P, Kimhofer T, et al. Incomplete systemic recovery and metabolic phenoreversion in post-acute-phase nonhospitalized COVID-19 patients: implications for assessment of post-acute COVID-19 syndrome. Journal of proteome research. 2021;20(6):3315-29.
  91. Boettler T, Marjot T, Newsome PN, Mondelli MU, Maticic M, Cordero E, et al. Impact of COVID-19 on the care of patients with liver disease: EASL-ESCMID position paper after 6 months of the pandemic. JHEP Reports. 2020;2(5).
  92. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the index patient who caused tertiary transmission of COVID-19 infection in Korea: The application of lopinavir/ritonavir for the treatment of COVID-19 infected pneumonia monitored by quantitative RT-PCR. Journal of Korean medical science. 2020;35(6):e79-e.
  93. Epelbaum O. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Annals of internal medicine. 2020;173(12):1029-30.
  94. Singh S, Khan A. Clinical characteristics and outcomes of coronavirus disease 2019 among patients with preexisting liver disease in the United States: a multicenter research network study. Gastroenterology. 2020;159(2):768-71. e3.
  95. Ali N. Relationship between COVID-19 infection and liver injury: A review of recent data. Frontiers in Medicine. 2020;7:458.
  96. Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. bmj. 2020;368.
  97. Chan SL, Kudo M. Impacts of COVID-19 on Liver Cancers: During and after the Pandemic. Liver Cancer. 2020;9(5):491-502.
  98. Ray U, Aziz F, Shankar A, Biswas AS, Chakraborty A. COVID-19: The Impact in Oncology Care. SN Comprehensive Clinical Medicine. 2020:1-10.
  99. Li X, Wang W, Yan S, Zhao W, Xiong H, Bao C, et al. Drug-induced liver injury in COVID-19 treatment: Incidence, mechanisms and clinical management. Front Pharmacol. 2022;13:1019487.
  100. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe Covid-19. New England Journal of Medicine. 2020;382(24):2327-36.
  101. Zampino R, Mele F, Florio LL, Bertolino L, Andini R, Galdo M, et al. Liver injury in remdesivir-treated COVID-19 patients. Hepatology international. 2020;14(5):881-3.
  102. Hashemian SM, Farhadi T, Velayati AA. A review on remdesivir: a possible promising agent for the treatment of COVID-19. Drug design, development and therapy. 2020;14:3215.
  103. Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, et al. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of COVID-19. ACS central Science. 2020;6(5):672-83.
  104. Hon KL, Leung KKY, Leung AK, Qian SY, Chan VP, Ip P, et al. Coronavirus disease 2019 (COVID-19): latest developments in potential treatments. Drugs in context. 2020;9.
  105. Khalili JS, Zhu H, Mak NSA, Yan Y, Zhu Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID‐ Journal of medical virology. 2020;92(7):740-6.
  106. Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. The Lancet. 2020;395(10238):1695-704.
  107. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. New England Journal of Medicine. 2020.
  108. Morra ME, Van Thanh L, Kamel MG, Ghazy AA, Altibi AM, Dat LM, et al. Clinical outcomes of current medical approaches for Middle East respiratory syndrome: a systematic review and meta‐ Reviews in medical virology. 2018;28(3):e1977.
  109. Álvarez Gómez AM, Cardona Maya WD. Treatment of COVID-19: Old Friends for a New Enemy. Pharmaceutical and Biomedical Research. 2020;6:1-4.
  110. Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease‐19 treatment option. Journal of medical virology. 2020;92(6):556-63.
  111. Chan K, Lai S, Chu C, Tsui E, Tam C, Wong M, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre retrospective matched cohort study. Hong Kong medical journal. 2003.
  112. Shehu AI, Lu J, Wang P, Zhu J, Wang Y, Yang D, et al. Pregnane X receptor activation potentiates ritonavir hepatotoxicity. The Journal of clinical investigation. 2019;129(7):2898-903.
  113. Romanelli A, Mascolo S. Sirolimus to treat SARS-CoV-2 infection: an old drug for a new disease. Respir Med. 2020;8(4):420-2.
  114. Coquillard C, Vilchez V, Marti F, Gedaly R. mTOR signaling in regulatory T cell differentiation and expansion. SOJ Immunol. 2015;3(1):1-10.