Novel molecular prognostic and diagnostic techniques in colorectal cancer

Document Type : Review Article

Authors

1 Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

2 Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

4 Department of Medicine, Gastroenterology division, and Cancer Center, Howard University College of Medicine, Washington DC, USA.

5 Department of Pathology, Gastroenterology division, and Cancer Center, Howard University College of Medicine, Washington DC, USA.

6 Department of Pathology, Unii Lubelskiej Pomeranian Medical University, Szczecin, Poland.

7 Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

Background Colorectal cancer (CRC) is one of the more diffuse reasons for malignancy-associated death worldwide. According to the evidence that CRC is predominantly symptomless as it advances to the highest stages, the administration of screening schemes planned at initial diagnosis is required to lower the prevalence and fatality rate . We aimed to review the literature on different molecular procedures for detection of stool-based biomarkers in CRC.
Methods and Evidence Acquisition In the current study we reviewed papers of Google Scholar and PubMed database with no time limitation.
Conclusion An integrative framework of all epigenetic and genetic modifications compared to other traditional procedures were studied which represented a more acceptable specificity and sensitivity for the diagnosis, treatment, evaluating drug response and also the clinical outcome of CRC. Differential expression analysis of stool-derived RNAs (sRNAs) and stool DNA (sDNA) testing for ultrasensitive mutations, methylation, and fragmentation patterns can lead to an early-stage diagnosis and a better prognosis for CRC patients in a higher accuracy.

Keywords


  1. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and
    risk factors. Prz Gastroenterol. 2019; 14(2):89-103.
  2. Salimzadeh H, Bishehsari F, Sauvaget C, Amani M, Hamzehloo G, Nikfarjam A, et al. Feasibility of
    Colon Cancer Screening by Fecal Immunochemical Test in Iran. Arch Iran Med. 2017;20(12):726-33.
  3. Robertson DJ, Lee JK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, et al. Recommendations on Fecal Immunochemical Testing to Screen for Colorectal Neoplasia: A Consensus Statement by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2017;152(5):1217-37.e3.
  4. Bénard F, Barkun AN, Martel M, von Renteln D. Systematic review of colorectal cancer screening guidelines for average-risk adults: Summarizing the current global recommendations.
    World journal of gastroenterology. 2018;24(1):124.
  5. Issa IA, Noureddine M. Colorectal cancer screening: An updated review of the available options World journal of gastroenterology. 2017;23(28):5086-96.
  6. Gimeno García AZ. Factors Influencing Colorectal Cancer Screening Participation.
    Gastroenterology Research and Practice. 2012;2012:483417.
  7. Han YD, Oh TJ, Chung T-H, Jang HW, Kim YN, An S, et al. Early detection of colorectal cancer based on presence of methylated syndecan-2 (SDC2) in stool DNA. Clinical epigenetics. 2019;11(1):1-11.
  8. Jones RM, Devers KJ, Kuzel AJ, Woolf SH. Patient-reported barriers to colorectal cancer screening: a
    mixed-methods analysis. American journal of preventive medicine. 2010;38(5):508-16.
  9. Muthukrishnan M, Arnold LD, James AS. Patients’ self-reported barriers to colon cancer screening in federally qualified health center settings. Prev Med Rep. 2019;15:100896-.
  10. Ebner DW, Kisiel JB. Stool- Based Tests for Colorectal Cancer Screening: Performance Benchmarks
    Lead to High Expected Efficacy. Curr Gastroenterol Rep. 2020;22(7):32-.
  11. Rabeneck L, Rumble RB, Thompson F, Mills M, Oleschuk C, Whibley A, et al. Fecal immunochemical tests compared with guaiac fecal occult blood tests for population-based colorectal cancer screening.                                             Can JGastroenterol. 2012;26(3):131-47.
  12. Rabeneck L, Rumble RB, Thompson F, Mills M, Oleschuk C, Whibley A, et al. Fecal immunochemical tests compared with guaiac fecal occult blood tests for population-based colorectal cancer screening. Canadian Journal of Gastroenterology. 2012;26(3):131-47.
  13. Navarro M, Nicolas A, Ferrandez A, Lanas A. Colorectal cancer population screening programs worldwide in 2016: An update. World journal of gastroenterology. 2017;23(20):3632.
  14. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, et al. Multitarget stool DNA testing for colorectal-cancer screening. New England Journal of Medicine. 2014;370(14):1287-97.
  15. Redwood DG, Asay ED, Blake ID, Sacco PE, Christensen CM, Sacco FD, et al., editors. Stool DNA testing for screening detection of colorectal neoplasia in Alaska native people. Mayo Clinic Proceedings; 2016: Elsevier.
  16. Bosch L, Melotte V, Mongera S, Daenen K, Coupé V, Van Turenhout ST, et al. Multitarget stool DNA
    test performance in an averagerisk colorectal cancer screening population. The American journal of
    gastroenterology. 2019;114(12):1909.
  17. Church TR, Wandell M, Lofton- Day C, Mongin SJ, Burger M, Payne SR, et al. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut. 2014;63(2):317-25.
  18. Rashid H, Hossain B, Siddiqua T, Kabir M, Noor Z, Ahmed M, et al. Fecal MicroRNAs as Potential Biomarkers for Screening and Diagnosis of Intestinal Diseases. Front Mol Biosci. 2020;7:181-.
  19. Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, et al. Roles of microRNAs in inflammatory
    bowel disease. International journal of biological sciences. 2021;17(8):2112-23.
  20. Lin JS, Perdue LA, Henrikson NB, Bean SI, Blasi PRJJ. Screening for colorectal cancer: updated evidence report and systematic review for the US Preventive Services Task Force. 2021;325(19):1978-98.
  21. Ahlquist DA. Stool-Based Tests Vs Screening Colonoscopy for the Detection of Colorectal Cancer.
    Gastroenterology & hepatology. 2019;15(8):437-40.
  22. Herring E, Kanaoka S, Tremblay E, Beaulieu JF. A Stool Multitarget mRNA Assay for the Detection of
    Colorectal Neoplasms. Methods Mol Biol. 2018;1765:217-27.
  23. Zhang X, Sun XF, Shen B, Zhang H. Potential Applications of DNA, RNA and Protein Biomarkers in Diagnosis, Therapy and Prognosis for Colorectal Cancer: A Study from Databases to AI-Assisted Verification. 2019;11(2).
  24. Pellino G, Gallo G, Pallante P, Capasso R, De Stefano A, Maretto I, et al. Noninvasive Biomarkers of Colorectal Cancer: Role in Diagnosis and Personalised Treatment Perspectives. Gastroenterology research and practice. 2018;2018:2397863-.
  25. Loktionov A. Biomarkers for detecting colorectal cancer noninvasively: DNA, RNA or proteins?
    World journal of gastrointestinal oncology. 2020;12(2):124.
  26. Shulman LM, Hindiyeh M, Muhsen K, Cohen D, Mendelson E, Sofer D. Evaluation of four different
    systems for extraction of RNA from stool suspensions using MS-2 coliphage as an exogenous control
    for RT-PCR inhibition. PLoS One. 2012;7(7):e39455.
  27. Videnska P, Smerkova K, Zwinsova B, Popovici V, Micenkova L, Sedlar K, et al. Stool sampling and DNA isolation kits affect DNA quality and bacterial composition following 16S rRNA gene sequencing using MiSeq Illumina platform. Scientific reports. 2019;9(1):1-14.
  28. Kalmár A, Péterfia B, Wichmann B, Patai ÁV, Barták BK, Nagy ZB, et al. Comparison of automated and manual DNA isolation methods for DNA methylation analysis of biopsy, fresh frozen, and formalin-fixed, paraffinembedded colorectal cancer samples. Journal of laboratory automation. 2015;20(6):642-51.
  29. Carozzi FM, Sani C. Fecal Collection and Stabilization Methods for Improved Fecal DNA Test for
    Colorectal Cancer in a Screening Setting. Journal of Cancer Research.2013;2013:818675.
  30. Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors– occurrence, properties and removal.
    Journal of applied microbiology. 2012;113(5):1014-26.
  31. Olson J, Whitney DH, Durkee K, Shuber AP. DNA stabilization is critical for maximizing performance
    of fecal DNA-based colorectal cancer tests. Diagnostic molecular pathology: the American journal of surgical pathology, part B. 2005;14(3):183-91.
  32. Nechvatal JM, Ram JL, Basson MD, Namprachan P, Niec SR, Badsha KZ, et al. Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. Journal of microbiological methods. 2008;72(2):124-32.
  33. Itzkowitz SH, Jandorf L, Brand R, Rabeneck L, Schroy III PC, Sontag S, et al. Improved fecal DNA test for colorectal cancer screening. Clinical Gastroenterology and Hepatology. 2007;5(1):111-7.
  34. Jin S, Ye Q, Hong Y, Dai W, Zhang C, Liu W, et al. A systematic evaluation of stool DNA preparation protocols for colorectal cancer screening via analysis of DNA methylation biomarkers. Clinical chemistry and laboratory medicine. 2020;59(1):91-9.
  35. Gachabayov M, Lebovics E, Rojas A, Felsenreich DM. Performance evaluation of stool DNA methylation tests in colorectal cancer screening: a systematic review and meta-analysis. 2021;23(5):1030-42.
  36. Abbaszadegan MR, Velayati A, Tavasoli A , D adkhah E . R apid DNA extraction protocol from
    stool, suitable for molecular genetic diagnosis of colon cancer. Iranian Biomedical Journal. 2007;11(3):203-8.
  37. Whitney D, Skoletsky J, Moore K, Boynton K, Kann L, Brand R, et al. Enhanced retrieval of
    DNA from human fecal samples results in improved performance of colorectal cancer screening test. The
    Journal of Molecular Diagnostics. 2004;6(4):386-95.
  38. Rengucci C, De Maio G, Menghi M, Benzi F, Calistri D. Evaluation of Colorectal Cancer Risk and
    Prevalence by Stool DNA Integrity Detection. Journal of visualized experiments: JoVE. 2020(160).
  39. Eckmann JD, Ebner DW, Kisiel JB. Multi-target stool DNA testing for colorectal cancer screening: Emerging learning on real-world performance. Current treatment options in gastroenterology. 2020;18(1):109-19.
  40. Roperch J-P, Benzekri K, Mansour H, Incitti R. Improved amplification efficiency on stool samples by addition of spermidine and its use for noninvasive detection of colorectal cancer. BMC biotechnology. 2015;15(1):1-8.
  41. Li M, Chen W-D, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, et al. Sensitive digital
    quantification of DNA methylation in clinical samples. Nature biotechnology. 2009;27(9):858-63.
  42. Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. BEAMing up for detection and quantification of rare sequence variants. Nature methods. 2006;3(2):95-7.
  43. Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, et al. Analysis of mutations
    in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology. 2008;135(2):489- 98. e7.
  44. Chomczynski P, Sacchi N. The singlestep method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction: twentysomething years on. Nature protocols. 2006;1(2):581-5.
  45. Whitney D, Skoletsky J, Moore K, Boynton K, Kann L, Brand R, et al. Enhanced retrieval of DNA from
    human fecal samples results in improved performance of colorectal cancer screening test.                                           J Mol Diagn. 2004;6(4):386-95.
  46. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations
    in the plasma of patients with colorectal tumors. Proceedings of the National Academy of Sciences.
    2005;102(45):16368-73.
  47. Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiology and PreventionBiomarkers. 2010;19(7):1766-74.
  48. Rashid H, Hossain B, Siddiqua T, Kabir M, Noor Z, Ahmed M, et al. Fecal MicroRNAs as potential biomarkers for screening and diagnosis of intestinal diseases. Front Mol Biosci. 2020;7.
  49. Chen WD, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L, et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. Journal of the National Cancer Institute. 2005;97(15):1124-32.
  50. Callari M, Dugo M, Musella V, Marchesi E, Chiorino G, Grand MM, et al. Comparison of microarray
    platforms for measuring differential microRNA expression in paired normal/cancer colon tissues. PloS
    one. 2012;7(9):e45105-e.
  51. Wang B, Xi Y. Challenges for microRNA microarray data analysis. Microarrays. 2013;2(2):34-50.
  52. Tarca AL, Romero R, Draghici S. Analysis of microarray experiments of gene expression profiling. American journal of obstetrics and gynecology. 2006;195(2):373-88.
  53. Slatko BE, Gardner AF, Ausubel FM. Overview of Next-Generation Sequencing Technologies. Curr
    Protoc Mol Biol. 2018;122(1):e59-e.
  54. De Cario R, Kura A, Suraci S, Magi A, Volta A, Marcucci R, et al. Sanger Validation of High-Throughput
    Sequencing in Genetic Diagnosis: Still the Best Practice? Frontiers in genetics. 2020;11.
  55. Di Resta C, Galbiati S, Carrera P, Ferrari M. Next-generation sequencing approach for the diagnosis
    of human diseases: open challenges and new opportunities. EJIFCC. 2018;29(1):4-14.
  56. Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics.                                   J Genet Genomics. 2011;38(3):95-109.
  57. Dickinson BT, Kisiel J, Ahlquist DA, Grady WM. Molecular markers for colorectal cancer screening. Gut. 2015;64(9):1485-94.
  58. Inoue T, Fujii H, Koyama F, Nakagawa T, Uchimoto K, Nakamura S, et al. Exfoliated Tumor Cells in
    Intraluminal Lavage Samples after Colorectal Endoscopic Submucosal Dissection: A Pilot Study. Hepatogastroenterology. 2014;61(131):667-70.
  59. Inoue T, Fujii H, Koyama F, Nakamura S, Ueda T, Nishigori N, et al. Intraluminal lavage to remove
    exfoliated tumor cells after colorectal endoscopic submucosal dissection.
    Surg Endosc. 2016;30(7):2773-8.
  60. Richter S. Fecal DNA screening in colorectal cancer. Can J Gastroenterol. 2008;22(7):631-3.
  61. Gonzalez-Pons M, Cruz-Correa M. Colorectal cancer biomarkers: where are we now?                                           BioMed research international. 2015;2015.
  62. Koga Y, Yasunaga M, Moriya Y, Akasu T, Fujita S, Yamamoto S, et al. Detection of colorectal cancer
    cells from feces using quantitative real-time RT-PCR for colorectal cancer diagnosis. Cancer Sci.
    2008;99(10):1977-83.
  63. Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev.2010;19(7):1766-74.
  64. White V, Scarpini C, Barbosa- Morais NL, Ikelle E, Carter S, Laskey RA, et al. Isolation of stoolderived
    mucus provides a high yield of colonocytes suitable for early detection of colorectal carcinoma.
    Cancer Epidemiology and Prevention Biomarkers. 2009;18(7):2006-13.
  65. Hong SN. Genetic and epigenetic alterations of colorectal cancer. Intestinal research. 2018;16(3):327.
  66. Zhang Y, Suehiro Y, Shindo Y, Sakai K, Hazama S, Higaki S, et al. Long‑fragment DNA as a potential
    marker for stool‑based detection of colorectal cancer. Oncology letters.2015;9(1):454-8.
  67. Dhaliwal A, Vlachostergios PJ, Oikonomou KG, Moshenyat Y. Fecal DNA testing for colorectal
    cancer screening: Molecular targets and perspectives. World journal of                                                                gastrointestinal oncology. 2015;7(10):178.
  68. Loktionov A. Cell exfoliation in the human colon: myth, reality and implications for colorectal cancer
    screening. International journal of cancer. 2007;120(11):2281-9.
  69. Berger BM, Ahlquist DA. Stool DNA screening for colorectal neoplasia: biological and technical basis for high detection rates. Pathology. 2012;44(2):80-8.
  70. Young GP, Bosch LJ. Fecal tests: from blood to molecular markers. Current colorectal cancer reports.2011;7(1):62-70.
  71. Ahlquist DA, Skoletsky JE, Boynton KA, Harrington JJ, Mahoney DW, Pierceall WE, et al. Colorectal cancer screening by detection of altered human DNA in stool: feasibility of a multitarget assay panel.                                  Gastroenterology. 2000;119(5):1219-27.
  72. Olmedillas-López S, Lévano-Linares DC, Alexandre CLA, Vega-Clemente L, Sánchez EL, Villagrasa A, et al. Detection of KRAS G12D in colorectal cancer stool by droplet digital PCR.World journal of gastroenterology. 2017;23(39):7087.
  73. Koga Y, Yasunaga M, Moriya Y, Akasu T, Fujita S, Yamamoto S, et al. Detection of the DNA point
    mutation of colorectal cancer cells isolated from feces stored under different conditions. Japanese journal of clinical oncology. 2009;39(1):62-9.
  74. Vanova B, Kalman M, Jasek K, Kasubova I, Burjanivova T, Farkasova A, et al. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clinical and experimental medicine. 2019;19(2):219-24.
  75. Rotelli M, Di Lena M, Cavallini A, Lippolis C, Bonfrate L, Chetta N, et al. Fecal microRNA profile in patients with colorectal carcinoma before and after curative surgery. 2015;30:891-8.
  76. Salehi R, Mohammadi M, Emami M, Salehi A. Methylation pattern of SFRP1 promoter in stool sample is a potential marker for early detection of colorectal cancer. Advanced biomedical research. 2012;1.
  77. Liu Y, Wu H, Zhou Q, Song Q, Rui J, Zou B, et al. Digital quantification of gene methylation in stool DNA by emulsion-PCR coupled with hydrogel immobilized bead-array. 2017;92:596-601.
  78. Lu H, Huang S, Zhang X, Wang D, Zhang X, Yuan X, et al. DNA methylation analysis of SFRP2, GATA4/5, NDRG4 and VIM for the detection of colorectal cancer in fecal DNA. Oncology letters. 2014;8(4):1751-6.
  79. Huang Z, Li L, Wang JJDd, sciences. Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. 2007;52:2287-91.
  80. Zhan Y-X, Luo G-H. DNA methylation detection methods used in colorectal cancer.                                              World journal of clinical cases. 2019;7(19):2916.
  81. Xiao Z, Li B, Wang G, Zhu W, Wang Z, Lin J, et al. Validation of methylation-sensitive high-resolution
    melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms.2014;431:154-63.
  82. Leung WK, To K-F, Man EP, Chan MW, Hui AJ, Ng SS, et al. Detection of hypermethylated DNA
    or cyclooxygenase-2 messenger RNA in fecal samples of patients with                                                            colorectal cancer or polyps. 2007;102(5):1070-6.
  83. Koga Y, Yasunaga M, Moriya Y, Akasu T, Fujita S, Yamamoto S, et al. Detection of colorectal cancer cells from feces using quantitative realtime RT‐PCR for colorectal cancer diagnosis. 2008;99(10):1977-83.
  84. Herring E, Tremblay É, McFadden N, Kanaoka S, Beaulieu J-FJC. Multitarget stool mRNA test for detecting colorectal cancer lesions including advanced adenomas. 2021;13(6):1228.
  85. Herring E, Kanaoka S, Tremblay É, Beaulieu J-FJWJoG. Droplet digital PCR for quantification of ITGA6 in a stool mRNA assay for the detection of colorectal cancers. 2017;23(16):2891.
  86. Ahmed FE, Ahmed NC, Vos PW, Bonnerup C, Atkins J N, Casey M, et al. Diagnostic microRNA markers
    to screen for sporadic human colon cancer in stool: I. Proof of principle. 2013;10(3):93-113.
  87. Wu CW, Ng SC, Dong Y, Tian L, Ng SSM, Leung WW, et al. Identification of microRNA-135b in Stool as a Potential Noninvasive Biomarker for Colorectal Cancer and AdenomamiR- 135b for                                                             Colorectal Cancer Diagnosis. 2014;20(11):2994-3002.
  88. Choi HH, Cho Y-S, Choi JH, Kim H-K, Kim SS, Chae H-SJO. Stoolbased miR-92a and miR-144* as noninvasive biomarkers for colorectal cancer screening. 2019;97(3):173-9.
  89. Chang P-Y, Chen C-C, Chang Y-S, Tsai W-S, You J-F, Lin G-P, et al. MicroRNA-223 and microRNA- 92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. 2016;7(9):10663-75.
  90. Beaulieu J-F, Herring E, Kanaoka S, Tremblay É. Use of integrin alpha 6 transcripts in a stool mRNA
    assay for the detection of colorectal cancers at curable stages. Oncotarget. 2016;7(12):14684-92.
  91. Stadler SC, Allis CD, editors. Linking epithelial-to-mesenchymal-transition and epigenetic modifications. Seminars in cancer biology; 2012: Elsevier.
  92. Bardhan K, Liu K. Epigenetics and colorectal cancer pathogenesis.Cancers (Basel). 2013;5(2):676-713.
  93. Chen J-J, Wang A-Q, Chen Q-Q. DNA methylation assay for colorectal carcinoma. Cancer biology &
    medicine. 2017;14(1):42.
  94. Zou H, Harrington J, Rego RL, Ahlquist DA. A novel method to capture methylated human DNA
    from stool: implications for colorectal cancer screening. Clinical Chemistry. 2007;53(9):1646-51.
  95. Oh TJ, Oh HI, Seo YY, Jeong D, Kim C, Kang HW, et al. Feasibility of quantifying SDC2 methylation
    in stool DNA for early detection of colorectal cancer. Clinical epigenetics. 2017;9(1):1-11.
  96. Chen W-D, Han ZJ, Skoletsky J, Olson J, Sah J, Myeroff L, et al. Detection in fecal DNA of colon cancer–specific methylation of the nonexpressed vimentin gene. Journal of the National Cancer Institute. 2005;97(15):1124-32.
  97. Zou H, Allawi H, Cao X, Domanico M, Harrington J, Taylor WR, et al. Quantification of methylated markers with a multiplex methylation-specific technology. Clinical chemistry. 2012;58(2):375-83.
  98. Kisiel JB, Klepp P, Allawi HT, Taylor WR, Giakoumopoulos M, Sander T, et al. Analysis of DNA
    methylation at specific loci in stool samples detects colorectal cancer and high-grade dysplasia in patients with inflammatory bowel disease. Clinical Gastroenterology and Hepatology. 2019;17(5):914-21. e5.
  99. Nagasaka T, Tanaka N, Cullings HM, Sun D-S, Sasamoto H, Uchida T, et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. 2009;101(18):1244-58.
  100. Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the
    advantage and disadvantage. Clinical epigenetics. 2018;10(1):1-10.
  101. Bhatt DB, Emuakhagbon V-S. Current trends in colorectal cancer screening.                                                       Current Colorectal Cancer Reports. 2019;15(2):45-52.
  102. Koga Y, Yasunaga M, Moriya Y, Akasu T, Fujita S, Yamamoto S, et al. Exosome can prevent RNase
    from degrading microRNA in feces. Journal of gastrointestinal oncology. 2011;2(4):215.
  103. Wang B, Howel P, Bruheim S, Ju J, Owen LB, Fodstad O, et al. Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. PloS one. 2011;6(2):e17167.
  104. Wang B, Howel P, Bruheim S, Ju J, Owen LB, Fodstad O, et al. Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. 2011;6(2):e17167.
  105. Dong Y, Wu W, Wu C, Sung J, Yu J, Ng SJBjoc. MicroRNA dysregulation in colorectal cancer: a clinical
    perspective. 2011;104(6):893-8.
  106. Ahmed FE, Jeffries CD, Vos PW, Flake G, Nuovo GJ, Sinar DR, et al. Diagnostic microRNA markers
    for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. 2009;6(5):281-95.
  107. Bardhan K, Liu KJC. Epigenetics and colorectal cancer pathogenesis. 2013;5(2):676-713.
  108. Oh TJ, Oh HI, Seo YY, Jeong D, Kim C, Kang HW, et al. Feasibility of quantifying SDC2 methylation
    in stool DNA for early detection of colorectal cancer. 2017;9(1):1-11.
  109. Tepus M, Yau TO. Non-Invasive Colorectal Cancer Screening: An Overview.                                               Gastrointestinal tumors. 2020;7(3):62-73.
  110. Zhang W, Yang C, Wang S, Xiang Z, Dou R, Lin Z, et al. SDC2 and TFPI2 methylation in stool samples
    as an integrated biomarker for early detection of colorectal cancer.2021:3601-17.
  111. Palomba G, Colombino M, Contu A, Massidda B, Baldino G, Pazzola A, et al. Prevalence of KRAS, BRAF, and PIK3CA somatic mutations in patients with colorectal carcinoma may vary in the same population:                                    clues from Sardinia. 2012;10:1-9.
  112. Ahlquist DA, Skoletsky JE, Boynton KA, Harrington JJ, Mahoney DW, Pierceall WE, et al. Colorectal cancer screening by detection of altered human DNA in stool: feasibility of                                                                                               a multitarget assay panel. 2000;119(5):1219-27.
  113. Diehl F, Schmidt K, Durkee KH, Moore KJ, Goodman SN, Shuber AP, et al. Analysis of mutations
    in DNA isolated from plasma and stool of colorectal cancer patients. 2008;135(2):489-98. e7.
  114. Glöckner SC, Dhir M, Yi JM, McGarvey KE, Van Neste L, Louwagie J, et al. Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer. 2009;69(11):4691-9.
  115. Park S-K, Song CS, Yang H-J, Jung YS, Choi KY, Koo DH, et al. Field cancerization in sporadic colon
    cancer. 2016;10(5):773.
  116. Wang Y, Chen P-M, Liu R-B. Advance in plasma SEPT9 gene methylation assay for colorectal
    cancer early detection. World journal of gastrointestinal oncology. 2018;10(1):15-22.
  117. Tóth K, Sipos F, Kalmár A, Patai AV, Wichmann B, Stoehr R, et al. Detection of methylated SEPT9 in
    plasma is a reliable screening method for both left- and right-sided colon cancers. PloS one. 2012;7(9):e46000-e.
  118. De Maio G, Rengucci C, Zoli W, Calistri DJWjogW. Circulating and stool nucleic acid analysis
    for colorectal cancer diagnosis. 2014;20(4):957.
  119. Cao Y, Zhao G, Yuan M, Liu X, Ma Y, Cao Y, et al. KCNQ5 and C9orf50 methylation in stool DNA for early detection of colorectal cancer. 2021;10:621295.
  120. Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, et al. Fecal MicroRNAs as Novel Biomarkers for Colon Cancer ScreeningFecal MicroRNAs and Cancer Biomarkers. 2010;19(7):1766-74.
  121. Ren A, Dong Y, Tsoi H, Yu J. Detection of miRNA as non-invasive biomarkers of colorectal cancer.
    International journal of molecular sciences. 2015;16(2):2810-23.
  122. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. 2020;9(2):276.
  123. Negi RR, Rana SV, Gupta V, Gupta R, Chadha VD, Prasad KK, et al. Over-expression of cyclooxygenase-2 in colorectal cancer patients. 2019;20(6):1675.
  124. Chen H, Hu Y, Xiang W, Cai Y, Wang Z, Xiao Q, et al. Prognostic significance of matrix metalloproteinase 7 immunohistochemical expression in colorectal cancer: a meta-analysis. 2015;8(3):3281.
  125. Zeng Z-S, Shu W-P, Cohen AM, Guillem JGJCCR. Matrix metalloproteinase-7 expression in
    colorectal cancer liver metastases: evidence for involvement of MMP-7 activation in human cancer
    metastases. 2002;8(1):144-8.
  126. Chiu T-J, Chen C-H, Chien C-Y, Li S-H, Tsai H-T, Chen Y-JJJotm. High ERCC1 expression predicts cisplatinbased chemotherapy resistance and poor outcome in unresectable squamous cell carcinoma of head and neck in a betel-chewing area. 2011;9:1-8.
  127. Bustin SA, Murphy J. RNA biomarkers in colorectal cancer. Methods (San Diego, Calif). 2013;59(1):116-25.
  128. Bustin SA, Nolan T. Pitfalls of quantitative real-time reversetranscription polymerase chain
    reaction. Journal of biomolecular techniques : JBT. 2004;15(3):155-66.