Carausius morosus(Phasmatodea) Homologues of Human Genes withElevated Expression in the Colon

Document Type : Research/Original Article

Author

Department of Entomology, National Taiwan University, Taipei, Taiwan

Abstract

Background: Preliminary testing of novel drugs for colorectal conditions must be performed on animal models, with invertebrate
models desirable for practical reasons. The insect excretory organs, the Malpighian tubules, have been cited as models for human
renal disease research because they differentially express several genes homologous to those differentially expressed in human
kidneys. Their role in excretion and homeostasis suggests that they could be models for human colorectal disease. The insect Carausius
morosus (Phasmatodea) has been a model organism for decades. Regarding its potential use as a colorectal disease model,
it has an advantage over other insects in that excretion in Phasmatodea is split between two organs: Malpighian tubules and the
Phasmatodea-specific “appendices of the midgut”.
Objectives: To find homologues of human colon genes expressed in the excretory tissues of C. morosus for potential use in drug
testing and other experiments requiring an animal model.
Methods: Pre-existing transcriptomics data for the excretory system of the C. morosus were examined to find genes homologous to
those known to have elevated expression in the human colon. This was done with the goal of possibly determining the excretory
tissues in which they are differentially expressed.
Results: Exactly sixty transcripts from the excretory system transcriptome of C. morosus showed high sequence homology with
human colon-specific genes, with a minimum e-value of 1e-50. Examples include solute carriers, myosin, bestrophin, carbonic anhydrase,
and nitric oxide synthase. Several genes were identified with prognostic value for renal, pancreatic, endometrial, liver, skin,
and urothelial cancers.
Conclusions: C. morosus can be used as model insect for human medical research applications, including colorectal drug testing.

Keywords


1. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13. doi: 10.1126/science.1145720. [PubMed: 17932254].
2. Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibodybased proteomics. Mol Cell Proteomics. 2014;13(2):397–406. doi: 10.1074/mcp.M113.035600. [PubMed: 24309898]. [PubMed Central: PMC3916642].
3. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419. [PubMed: 25613900].
4. Yu NY, Hallstrom BM, Fagerberg L, Ponten F, Kawaji H, Carninci P, et al. Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Res. 2015;43(14):6787– 98. doi: 10.1093/nar/gkv608. [PubMed: 26117540]. [PubMed Central: PMC4538815].
5. Gremel G, Wanders A, Cedernaes J, Fagerberg L, Hallstrom B, Edlund K, et al. The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling. J Gastroenterol. 2015;50(1):46–57. doi: 10.1007/s00535-014-0958-7. [PubMed: 24789573].
6. Yang L, Chu JS, Fix JA. Colon-specific drug delivery: New approaches and in vitro/in vivo evaluation. Int J Pharm. 2002;235(1-2):1–15. [PubMed: 11879735].
7. Mayer EA, Bradesi S, Chang L, Spiegel BM, Bueller JA, Naliboff BD. Functional GI disorders: From animal models to drug development.Gut. 2008;57(3):384–404. doi: 10.1136/gut.2006.101675. [PubMed: 17965064]. [PubMed Central: PMC4130737].
8. Berger J. Preclinical testing on insects predicts human haematotoxic potentials. Lab Anim. 2009;43(4):328–32. doi: 10.1258/la.2008.007162. [PubMed: 19505933].
9. Wang J, Kean L, Yang J, Allan AK, Davies SA, Herzyk P, et al. Functioninformed transcriptome analysis of Drosophila renal tubule. Genome Biol. 2004;5(9):R69. doi: 10.1186/gb-2004-5-9-r69. [PubMed: 15345053]. [PubMed Central: PMC522876].
10. Dow JA. Insights into the Malpighian tubule from functional genomics. J Exp Biol. 2009;212(Pt 3):435–45. doi: 10.1242/jeb.024224. [PubMed: 19151219].
11. Dow JA, Davies SA. The Malpighian tubule: Rapid insights from post-genomic biology. J Insect Physiol. 2006;52(4):365–78. doi: 10.1016/j.jinsphys.2005.10.007. [PubMed: 16310213].
12. Shelomi M, Kimsey LS. Vital staining of the stick insect digestive system identifies appendices of the midgut as novel system of excretion. J Morphol. 2014;275(6):623–33. doi: 10.1002/jmor.20243. [PubMed: 24338977].
13. Ramsay JA. The excretory system of the stick insect dixippus morosus (Orthoptera, Phasmidae). J Exp Biol. 1955;32:183–99.
14. Shelomi M. De novo transcriptome analysis of the excretory tubules of Carausius morosus (Phasmatodea) and possible functions of the midgut ’appendices’. PLoS One. 2017;12(4). e0174984. doi: 10.1371/journal.pone.0174984. [PubMed: 28384348]. [PubMed Central: PMC5383107].
15. Hoffmann P, Holtmann M, Dorn A. Degenerative and regenerative processes involved in midgut pseudotumor formation in the stick insect (Carausius morosus). J Morphol. 2009;270(12):1454–74. doi: 10.1002/jmor.10770. [PubMed: 19603413].
16. Holtmann M, Dorn A. Midgut pseudotumors and the maintenance of tissue homeostasis: Studies on aging and manipulated stick insects. J Morphol. 2009;270(2):227–40. doi: 10.1002/jmor.10685. [PubMed: 19034916].
17. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. doi: 10.1093/nar/25.17.3389. [PubMed: 9254694]. [PubMed Central: PMC146917].
18. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: A hub for data retrieval across taxonomic space. Database (Oxford). 2011;2011:bar030. doi: 10.1093/database/bar030. [PubMed: 21785142]. [PubMed Central: PMC3170168].
19. Thul PJ, Lindskog C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 2018;27(1):233–44. doi: 10.1002/pro.3307. [PubMed: 28940711]. [PubMed Central: PMC5734309].
20. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352). doi: 10.1126/science.aan2507. [PubMed: 28818916].