New Insights into the Roles of Yes-Associated Protein (YAP1) in Colorectal Cancer Development and Progression

Document Type : Review Article

Authors

1 Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran

2 Division of Biochemistry, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran

Abstract

Yes-associated protein (YAP1), the downstream effector of the Hippo pathway, plays important roles in the regulation of tissue reconstruction,
stem cell proliferation, and development of different cancers. The regulation of YAP1 phosphorylation, YAP1 expression
level, and its cellular localization have been considered in cancer development. There are different experimental evidences that
indicate that YAP1 activation results in tumorigenesis, tumor progression, and metastasis. YAP1 is a transcription co-activator, and
its dysregulation has been suggested in various cancers including colorectal cancer (CRC). The localization of YAP1 in the nucleus
results in YAP1 interactions with different transcription factors to promote the expression of genes involved in cell proliferation,
metastasis, and stem cell maintenance. However, a number of studies have been reported the tumor suppressor role of YAP1 in CRC.
Therefore, a better understanding of the YAP1 regulation could be helpful for prevention, diagnosis, and treatment of CRC. In this
review, we will discuss different roles of YAP1 in CRC progression through the regulatory roles of long non-coding RNAs (LncRNAs),
microRNAs (miRNAs) and circular RNAs (CircRNAs) in YAP1 regulation.

Keywords


1.Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18(1). doi: 10.3390/ijms18010197. [PubMed: 28106826]. [PubMed Central: PMC5297828].
2. Motovali-Bashi M, Hojati Z, Hajihoseiny S, Hemmati S. The stromelysin-1 5A/5A genotype enhances colorectal cancer cell invasion in Iranian population. J Res Med Sci. 2012;17(10):962–6. [PubMed: 23825998]. [PubMed Central: PMC3698657].
3. Pan Y, Tong JHM, Lung RWM, Kang W, Kwan JSH, Chak WP, et al. RASAL2 promotes tumor progression through LATS2/YAP1 axis of hippo signaling pathway in colorectal cancer. Mol Cancer. 2018;17(1):102. doi: 10.1186/s12943-018-0853-6. [PubMed: 30037330]. [PubMed Central: PMC6057036].
4. Zhou Z, Zhang HS, Zhang ZG, Sun HL, Liu HY, Gou XM, et al. Loss of HACE1 promotes colorectal cancer cell migration via upregulation of YAP1. J Cell Physiol. 2019;234(6):9663–72. doi: 10.1002/jcp.27653. [PubMed: 30362561].
5. Dehghanian F, Hojati Z, Esmaeili F, Masoudi-Nejad A. Networkbased expression analyses and experimental validations revealed high co-expression between Yap1 and stem cell markers compared to differentiated cells. Genomics. 2019;111(4):831–9. doi: 10.1016/j.ygeno.2018.05.007. [PubMed: 29775782].
6. Ou C, Sun Z, Li S, Li G, Li X, Ma J. Dual roles of yes-associated protein (YAP) in colorectal cancer. Oncotarget. 2017;8(43):75727–41. doi: 10.18632/oncotarget.20155. [PubMed: 29088905]. [PubMed Central: PMC5650460].
7. Dehghanian F, Hojati Z, Hosseinkhan N, Mousavian Z, MasoudiNejad A. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer. Comput Biol Med. 2018;99:76–84. doi: 10.1016/j.compbiomed.2018.05.023. [PubMed: 29890510].
8. Azad T, Janse van Rensburg HJ, Lightbody ED, Neveu B, Champagne A, Ghaffari A, et al. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat Commun. 2018;9(1):1061. doi: 10.1038/s41467-018-03278-w. [PubMed: 29535383]. [PubMed Central: PMC5849716].
9. Zhang M, Zhao Y, Zhang Y, Wang D, Gu S, Feng W, et al. LncRNA UCA1 promotes migration and invasion in pancreatic cancer cells via the Hippo pathway. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1770–82. doi: 10.1016/j.bbadis.2018.03.005. [PubMed: 29510195].
10. Tanaka K, Osada H, Murakami-Tonami Y, Horio Y, Hida T, Sekido Y. Statin suppresses Hippo pathway-inactivated malignant mesothelioma cells and blocks the YAP/CD44 growth stimulatory axis. Cancer Lett. 2017;385:215–24. doi: 10.1016/j.canlet.2016.10.020. [PubMed: 27773750].
11. Xiao Y, Hill MC, Zhang M, Martin TJ, Morikawa Y, Wang S, et al. Hippo signaling plays an essential role in cell state transitions during cardiac fibroblast development. Dev Cell. 2018;45(2):153–169 e6. doi: 10.1016/j.devcel.2018.03.019. [PubMed: 29689192]. [PubMed Central: PMC5947860].
12. Warren JSA, Xiao Y, Lamar JM. YAP/TAZ activation as a target for treating metastatic cancer. Cancers (Basel). 2018;10(4). doi: 10.3390/cancers10040115. [PubMed: 29642615]. [PubMed Central: PMC5923370].
13. Tang JY, Yu CY, Bao YJ, Chen L, Chen J, Yang SL, et al. TEAD4 promotes colorectal tumorigenesis via transcriptionally targeting YAP1. Cell Cycle. 2018;17(1):102–9. doi: 10.1080/15384101.2017.1403687. [PubMed: 29157094]. [PubMed Central: PMC5815434].
14. Wang X, Freire Valls A, Schermann G, Shen Y, Moya IM, Castro L, et al. YAP/TAZ orchestrate VEGF signaling during developmental angiogenesis. Dev Cell. 2017;42(5):462–478 e7. doi: 10.1016/j.devcel.2017.08.002. [PubMed: 28867486].
15. Ou C, Sun Z, Li X, Li X, RenW,Qin Z, et al.MiR-590-5p, a density-sensitive microRNA, inhibits tumorigenesis by targeting YAP1 in colorectal cancer. Cancer Lett. 2017;399:53–63. doi: 10.1016/j.canlet.2017.04.011. [PubMed: 28433598].
16. Yang R, Cai TT, Wu XJ, Liu YN, He J, Zhang XS, et al. Tumour YAP1 and PTEN expression correlates with tumour-associatedmyeloid suppressor cell expansion and reduced survival in colorectal cancer. Immunology. 2018;155(2):263–72. doi: 10.1111/imm.12949. [PubMed: 29770434]. [PubMed Central: PMC6142285].
17. Greenhough A, Bagley C, Heesom KJ, Gurevich DB, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10(11). doi: 10.15252/emmm.201708699. [PubMed: 30143543]. [PubMed Central: PMC6220329].
18. Li H, He F, Zhao X, Zhang Y, Chu X, Hua C, et al. YAP inhibits the apoptosis andmigration of human rectal cancer cells via suppression of JNKDrp1-mitochondrial fission-HtrA2/Omi pathways. Cell Physiol Biochem. 2017;44(5):2073–89. doi: 10.1159/000485946. [PubMed: 29241219].
19. Ferreira HJ, Esteller M. Non-coding RNAs, epigenetics, and cancer: Tying it all together. Cancer Metastasis Rev. 2018;37(1):55–73. doi: 10.1007/s10555-017-9715-8. [PubMed: 29374363].
20. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18. doi: 10.1038/nrc.2017.99. [PubMed: 29170536]. [PubMed Central: PMC6337726].
21. Choe MH, Yoon Y, Kim J, Hwang SG, Han YH, Kim JS. miR-550a-3-5p acts as a tumor suppressor and reverses BRAF inhibitor resistance through the direct targeting of YAP. Cell Death Dis. 2018;9(6):640. doi: 10.1038/s41419-018-0698-3. [PubMed: 29844307]. [PubMed Central: PMC5974323].
22. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33. doi: 10.1038/nrc3932. [PubMed: 25998712]. [PubMed Central: PMC4859809].
23. Moridikia A, Mirzaei H, Sahebkar A, Salimian J. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer. J Cell Physiol. 2018;233(2):901–13. doi: 10.1002/jcp.25801. [PubMed: 28092102].
24. Christensen LL, Holm A, Rantala J, Kallioniemi O, Rasmussen MH, Ostenfeld MS, et al. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer. PLoS One. 2014;9(6). e96767. doi: 10.1371/journal.pone.0096767. [PubMed: 24892549]. [PubMed Central: PMC4043686].
25. Xu L, Li M, Wang M, Yan D, Feng G, An G. The expression of microRNA375 in plasma and tissue is matched in human colorectal cancer. BMC Cancer. 2014;14:714. doi: 10.1186/1471-2407-14-714. [PubMed: 25255814]. [PubMed Central: PMC4181388].
26. Hwang HW, Wentzel EA, Mendell JT. Cell-cell contact globally activatesmicroRNA biogenesis. Proc Natl Acad Sci U S A. 2009;106(17):7016– 21. doi: 10.1073/pnas.0811523106. [PubMed: 19359480]. [PubMed Central: PMC2678439].
27. Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 2014;156(5):893–906. doi: 10.1016/j.cell.2013.12.043. [PubMed: 24581491]. [PubMed Central: PMC3982296].
28. SunM, Song H,Wang S, Zhang C, Zheng L, Chen F, et al. Integrated analysis identifies microRNA-195 as a suppressor of Hippo-YAP pathway in colorectal cancer. J Hematol Oncol. 2017;10(1):79. doi: 10.1186/s13045- 017-0445-8. [PubMed: 28356122]. [PubMed Central: PMC5372308].
29. Sun Z, Ou C, Liu J, Chen C, Zhou Q, Yang S, et al. YAP1-induced MALAT1 promotes epithelial-mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer.Oncogene. 2019;38(14):2627– 44. doi: 10.1038/s41388-018-0628-y. [PubMed: 30531836]. [PubMed Central: PMC6484768].
30. Fesler A, Liu H, Ju J. Modified miR-15a has therapeutic potential for improving treatment of advanced stage colorectal cancer through inhibition of BCL2, BMI1, YAP1 and DCLK1. Oncotarget. 2018;9(2):2367– 83. doi: 10.18632/oncotarget.23414. [PubMed: 29416778]. [PubMed Central: PMC5788646].
31. Hauptman N, Glavac D. Long non-coding RNA in cancer. Int J Mol Sci. 2013;14(3):4655–69. doi: 10.3390/ijms14034655. [PubMed: 23443164]. [PubMed Central: PMC3634483].
32. Guttman M, Rinn JL. Modular regulatory principles of large noncoding RNAs.Nature. 2012;482(7385):339–46. doi: 10.1038/nature10887. [PubMed: 22337053]. [PubMed Central: PMC4197003].
33. Xie X, Tang B, Xiao YF, Xie R, Li BS, Dong H, et al. Long non-coding RNAs in colorectal cancer. Oncotarget. 2016;7(5):5226–39. doi: 10.18632/oncotarget.6446. [PubMed: 26637808]. [PubMed Central: PMC4868682].
34. Zhong X, Lu M, Wan J, Zhou T, Qin B. Long noncoding RNA kcna3 inhibits the progression of colorectal carcinoma through downregulating YAP1 expression. Biomed Pharmacother. 2018;107:382–9. doi: 10.1016/j.biopha.2018.07.118. [PubMed: 30099342].
35. Ding HX, Lv Z, Yuan Y, Xu Q. The expression of circRNAs as a promising biomarker in the diagnosis and prognosis of human cancers: A systematic review and meta-analysis. Oncotarget. 2018;9(14):11824–36. doi: 10.18632/oncotarget.23484. [PubMed: 29545939]. [PubMed Central: PMC5837763].
36. Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS, et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 2017;77(9):2339–50. doi: 10.1158/0008-5472.CAN-16-1883. [PubMed: 28249903]. [PubMed Central: PMC5910173].