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Abstract

Introduction: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide.
Numerous studies have demonstrated dysregulated gene expression in CRC. However, comprehensive
investigations are still needed to clarify the underlying biological pathways disrupted by these dysregulated
genes. This study was designed to identify differentially expressed genes (DEGs) common across all CRC
stages compared to normal samples, as well as to identify hub genes and their related pathways.

Methods: RNA sequencing data were downloaded from the TCGA database. Samples were classified into four
stages, and DEGs between each stage and normal samples were identified. Genes present in all four groups
were selected for further analysis. Gene enrichment analyses were performed using the DAVID database to
validate the data. A protein-protein interaction (PPI) network was constructed, and hub genes were identified
using the CytoHubba plugin. The UALCAN database was used to perform in silico validation of the potential
genes of interest.

Results: A total of 2,899 genes were commonly expressed across all four groups. Biological pathway analysis
showed that these genes are enriched in known CRC pathways. PPI network analysis and hub gene identification
using the CytoHubba plugin highlighted key hub genes. Validation through the UALCAN database confirmed
the relevance of these genes, and enrichment analysis demonstrated their association with G protein-coupled
receptor (GPCR) signaling.

Conclusion: The hub genes are functionally associated with the GPCR signaling pathway. Given the well-
documented involvement of the GPCR pathway in various cancers, especially CRC, further research on these
genes and pathways is essential to enhance our understanding of this disease.
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Introduction million new cases and over 900,000 deaths dueto CRC
were estimated, making it a major health problem

Colorectal cancer (CRC) is the third most common (1). Although some countries with very high human
cancer and the second leading cause of cancer- development have seen a decline or stabilization
related death worldwide. In 2020, more than 1.9 in CRC incidence, attributed primarily to healthier
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lifestyles and established screening programs, CRC
continues to pose a substantial financial burden and
public health challenge worldwide (2).

CRC affects approximately 4% to 5% of people
worldwide. Age is the primary risk factor, with a
sharp increase in risk after 50 years old, while cases
occurring before 50 are rare, except for inherited
forms (3). Other unavoidable risk factors include a
personal history of CRC and inflammatory bowel
diseases such as ulcerative colitis and Crohn’s
disease, which cause chronic inflammation and
abnormal cell growth (dysplasia) that may lead to
cancer. A family history of CRC, particularly in
relatives diagnosed before age 50, also increases risk
due to genetic or environmental factors (4).

Lifestyle-related risks can be reduced with healthier
habits. A sedentary lifestyle is associated with an
increased risk of CRC, partly because it contributes
to obesity. Visceral fat produces inflammatory
substances that promote cancer development. Diet
plays a significant role: unhealthy eating habits can
increase CRC risk by up to 70% (5). Consumption
of red meat, especially when cooked at high
temperatures, releases carcinogens in the gut (6).
Smoking and alcohol consumption also increase
CRC risk. Smoking increases risk by approximately
10.8%, primarily among long-term smokers, due
to carcinogens reaching the intestines. The role of
alcohol is less clear ; however, acetaldehyde, its
metabolite, is carcinogenic, with effects varying
depending on individual enzyme variations (7).

Early detection plays a key role in preventing
metastasis, reducing mortality, and improving
both prognosis and future quality of life. Extensive
studies are needed to achieve this aim. Cancer stage
significantly influences survival outcomes. The
earliest stage of CRCs are called stage 0, which
represents very early cancer, followed by stages I
through IV. Generally, the lower the stage number,
the less the cancer has spread ; conversely, a higher
number, such as stage IV, indicates more extensive
cancer spread (8).

The average five-year relative survival rate for all
stages of CRC is 65.1%. However, in stage [V CRC,
where the cancer has metastasized to distant sites,
the average five-year survival rate drops significantly
to 15.5%. Evidence indicates that mutations and
changes in the expression of multiple genes disrupt
various cellular pathways, contributing to the onset
and progression of CRC (9). A lack of comprehensive
understanding of the underlying cellular mechanisms
has limited the ability to identify the causes and
develop effective prevention strategies for CRC.
Recent advancements in technologies such as
microarray analysis and RNA sequencing, as well as
the high-throughput data they generate, have enabled
the identification of differential gene expression
associated with CRC. Recently, several studies
have used bioinformatic analyses to identify gene
signatures related to CRC (10, 11). Liang, B. et al.
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identified key pathways and genes in CRC using
bioinformatics analysis. They used microarray data
for their analysis and identified hub genes along with
their associated pathways (12). Additionally, similar
studies have been conducted in other cancer types.
For example, Xiaoyu Zeng et al. used a bioinformatic
approach to predict potential biomarkers for breast
cancer, using three different microarray datasets and
online bioinformatic tools (13). Their work provides
a valuable framework for applying bioinformatics
techniques to shed light on the genes and pathways
involved in CRC, as demonstrated in our study.
This study aimed to extend previous investigations
on CRC by identifying common differentially
expressed genes (DEGs) across the four stages of
CRC compared to normal samples and by finding
hub genes that exhibit strong interconnections.
Additionally, identifying significant pathways
related to these hub genes could reveal the potential
molecular mechanisms underlying this cancer.

Materials and Methods

Download the Data and Preprocess It

RNA-seq data for 481 tumor samples and 41
adjacent normal tissue samples from the TCGA-
COAD project were downloaded from the TCGA
website (www.cancergenome.nih.gov). The data
were normalized using the DESeq2 package with
the R program (version 4.4.0) (14). Outlier samples
were identified through heatmap and a principal
component analysis (PCA) plots. Samples exhibiting
aberrant gene expression patterns inconsistent
with their designated normal or tumor status
were identified as outliers and removed from the
analysis; these plots were drawn using the ggplot2
package. Subsequently, clinical data for 459 colon
cancer patients were downloaded. According to
the American Joint Committee on Cancer staging
system, we classified tumor samples were classified
into four groups: stage I, stage 11, stage III, and stage
IV. After removing outliers and organizing samples
by stage, the dataset comprised 376 tumor samples
and 39 normal samples.

Identification of Differentially Expressed Genes
and Their Subgrouping

DEGs were identified using the DESeq?2 package by
comparing each stage against normal samples. This
resulted in four groups of DEGs (DEGs in stages
I-IV (DEG 1, 11, 111, and IV)). Genes in each group
were filtered based on an adjusted P-value of less
than 0.001 and |log2 fold change| greater than 2. The
genes in these groups exhibit certain similarities; for
example, a gene may be exclusive to DEG I, while
another may be present in both DEG I and DEG
II. Since there are four groups, the total number
of possible combinations is 16 (2%(, including one
combination representing genes that do not belong
to any group. Therefore, the genes were classified
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into 15 distinct groups based on their presence or
absence patterns across these four groups.

Gene Enrichment Analysis and Kyoto Encyclopedia
of Genes and Genomes (KEGG) Pathway Analysis

DAVID is an open database used to investigate the
functional annotation of genes and pathways (http:/
david.ncifcrf.gov; version 2021) (15). KEGG is a
database designed for analyzing relevant pathways
generated by high-throughput experimental
techniques (16). To identify the roles of DEGs, gene
ontology analysis including biological process,
cellular component, and molecular function, as well
as KEGG pathway analysis were performed using
the DAVID database.

PPI Network Analysis

The Search Tool for the Retrieval of Interacting
Genes (STRING; https://string-db.org/) was used to
construct a PPI network for protein-coding genes with
a confidence score cutoff set at 0.4. Cytoscape software
(version 3.10.1) was used to visualize the interaction
network (17). CytoHubba, a powerful plugin for
Cytoscape, was used to identify key hub genes by
applying various topological analysis methods,
including betweenness, degree, edge percolated
component, maximal clique centrality, maximum
neighborhood component, and stress (18). In this
study, degree, maximum neighborhood component,
and edge percolated component metrics were used.

UALCAN Validation

UALCAN is an interactive and comprehensive
web resource that provides easy access to cancer
OMICS data (TCGA, MET500, CPTAC, CBTTC)
and enables in silico validation of potential genes
of interest. In this study, the UALCAN database
was used to validate the expression of hub genes

DEG I

based on transcripts per million, a measure of gene
expression values across sample types and individual
cancer stages (19).

Results

Screening DEGs

Before performing DEG analysis, normalization
and outlier removal were conducted. Outliers were
identified using boxplots, heatmaps, and PCA. After
removing outliers, PCA and heatmap plots revealed
distinct groups between normal and tumor samples.
Ultimately, a total of 415 samples were selected for
further analysis. According to the clinical data, the
samples included 68 in Stage I, 150 in Stage II, 105
in Stage III, 53 in Stage IV, and 39 normal samples.
DEG analysis was performed by comparing each stage
against the normal samples (DEG I, DEG II, DEG 111,
and DEG 1V). To filter DEGs and identify significant
genes, genes with |log2 fold change| greater than 2
and an adjusted p-value less than 0.001 were selected.

Genes can be differentially expressed in any
combination of stages or not expressed in any
stage at all. There are 16 (equal to 2*) possible
outcomes based on the presence or absence of gene
expression in each group. DEGs were categorized
into 15 subgroups. The Venn diagram illustrates the
distribution of genes among the four groups of DEGs
(Figure 1).

Among these subgroups, DEGs present in all four
groups (highlighted in red in the Venn diagram) were
used for subsequent analysis. These 2899 genes are
significantly upregulated or downregulated across
all stages compared to normal samples. Therefore,
they may play important roles in the occurrence
and progression of CRC. In this group, there were
1,551 protein-coding genes and 816 IncRNAs while
pseudogenes and other other RNA types were excluded.

DEG I

Figure 1: The Venn diagram shows the segregation of genes among four groups of differentially expressed genes. Different colored
areas represented different differentially expressed genes. Some genes appear in more than one group, and this diagram indicates
the number of these genes. A total of 2,899 genes (shown in red) are present in all four groups of differentially expressed genes.

http://colorectalresearch.sums.ac.ir/
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Figure 2: Gene enrichment and KEGG pathway analyses were performed on the 2,899 genes that were upregulated or downregulated

across all four groups of differentially expressed genes (A-C).

Gene Ontology Enrichment and KEGG Pathway

Analysis
Gene ontology analysis was performed in three
functional categories: biological processes,

cellular components, and molecular functions.
KEGG pathway analysis was performed on
genes differentially expressed in all four groups.
Significant functional ontologies were selected
based on their false discovery rate (FDR), with a
threshold of FDR <0.001.

For the 2,899 genes, the upregulated genes in
biological process were primarily associated with
keratinization, intermediate filament organization,
and epidermis development. In cellular component,
they were mainly related to the extracellular region,
extracellular space, and cornified envelope. In
molecular functions, they were mainly related to
serine-type endopeptidase activity, growth factor
activity, and sequence-specific double-stranded
DNA binding (Figure 2-A).

The downregulated genes in this subgroup in
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biological process were primarily associated with
immunoglobulin production, phagocytosis, and the
positive regulation of B cell activation. In cellular
component, these genes were mainly related to the
plasma membrane, the immunoglobulin complex,
and the external side of the plasma membrane. In
molecular functions, they were mainly related to
antigen binding, immunoglobulin receptor binding,
and ligand-gated ion channel activity (Figure 2-B).

KEGG pathway analysis was performed separately
for upregulated and downregulated genes. The
significant pathways (FDR<0.01) are shown in Figure
2-C. These genes were primarily associated with
pathways such as WNT signaling, IL-17 signaling,
calcium signaling, and mineral absorption.

The identified biological pathways are well-
characterized and play significant roles in various
cancers (20-23). These results validate the analyses
conducted and the genes obtained. For the
continuation of this study, these genes are suitable
for identifying hub genes.

Iran J Colorectal Res 2025;13(2)
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Table 1: Names of hub genes, cytohubba methods, and expression values (indicating their upregulation or downregulation) are

presented in this table.

Hub genes Cytohubba method Expression value
1 Protein kinase cAMP-activated catalytic subunit beta (PRKACB) Degree/MNC/EPC down
2 C-X-C Motif Chemokine Ligand 8 (CXCLS) Degree/MNC/EPC up
3 Somatostatin (SST) Degree/MNC/EPC down
4 Neural Cell Adhesion Molecule 1 (NCAM]I) Degree/MNC/EPC down
5 Angiotensinogen (AGT) Degree/MNC/EPC up
6 Sonic hedgehog signaling molecule (SHH) Degree/MNC up
7 Interleukin 2 (IL2) Degree/MNC down
8 Calmodulin Like 3 (ALML3) Degree/MNC up
9 Glucagon (GCG) Degree/MNC down
10 Angiotensin II Receptor Type 1 (AGTR1) MNC/EPC down
11 Collagen Type I Alpha 1 Chain (COLI1A1) Degree up
12 Dopamine Receptor (DRD2) ERE@ up
13 Glutamate Decarboxylase 1 (GADI) EPC up
14 Fibroblast Growth Factor 8 (FGFS8) EPC up
15 Motif Chemokine Ligand 12 (CXCL12) EPC down

PPI Network Analysis

To identify protein-protein interactions within
the subgroup of interest (2,899 genes differentially
expressed across all four groups), a PPI network was
constructed specifically for the 1551 protein-coding
genes in this subgroup using the STRING database.
The cytoHubba plugin identified three different
sets of 10 hub genes through degree, maximum
neighborhood component, and edge percolated
component methods. Table 1 presents the gene IDs
along with their expression levels (upregulatedup or
downregulated) identified by these three methods.

UALCAN Database Analysis

The TCGA analysis on the UALCAN platform
validated the expression levels of these hub genes
; however, thetranscripts per million values for L2
and FGF8 were extremely low. As mentioned, all
of these genes are differentially expressed across
all stages based on our RNA-seq analysis. Figure 3
demonstrates that the UALCAN analysis confirmed
the differential expression of these hub genes in all
four stages.

Gene Enrichment Analysis for hub Genes

Gene enrichment analysis was performed for the
hub genes. In the Biological Process section, the G
protein-coupled receptor (GPCR)signaling pathway
was identified as a significant pathway. Among all
the hub genes identified in this study, C-X-C Motif
Chemokine Ligand 12 (CXCL12), C-X-C Motif
Chemokine Ligand 8 (CXCLS), Angiotensin II
Receptor Type 1 (AGTRI), Angiotensinogen (AGT),
Glucagon (GCG), Interleukin 2 (/L2), Somatostatin
(SST), and Dopamine Receptor (DRD2) were
involved in this pathway.

Discussion
In this study, RNA sequencing data from TCGA
were analyzed to identify hub genes that may play a

crucial role in the initiation or progression of CRC. A

http://colorectalresearch.sums.ac.ir/

total of 2899 DEGs common across all four stages of
CRC compared to the normal group were identified.
Functional enrichment analyses demonstrated that
these DEGs were significantly involved in biological
processes such as keratinization, phagocytosis
recognition, intermediate filament organization, and
immune response. Previous studies have demonstrated
that dysregulation of these biological processes plays a
crucial role in cancer development and progression (24-
26), thereby supporting the validity ofthis study. PPI
network analysis identified three different sets of hub
genes including PRKACB, CXCLS, SST, IL2, COLIAI,
SHH, NCAM1, CALML3, AGT, GCG, AGTRI, CXCLI2,
DRD2, FGFS, and GADI. To validate the expression
levels of these genes, the UALCAN database, based
on TCGA data, was utilized, confirming that the
dysregulation of these hub genes is consistent with
CRC. Finally, enrichment analysis using the DAVID
database identified biological pathways associated
with the validated hub genes. The genes were classified
into two main pathways: GPCR signalingand cell-cell
signaling.

A significant number of the hub genes are involved
in the GPCR pathway. The seven-transmembrane
GPCRs, which belong to the largest superfamily
of signal transduction proteins, regulate multiple
biological functions by coupling to heterotrimeric
G-protein associated with the inner surface of the
plasma membrane. G proteins are classified into four
main subgroups: Gas, Gag/11, Gai/o, and Ga12/13,
which selectively associate upon ligand activation to
initiate a potential downstream signaling pathway.
These G proteins consist of three subunits, Ga,
Gp, and Gy, located on the inner part of the plasma
membrane (27). GPCRs play a crucial role in
numerous physiological functions as well as in tumor
growth and metastasis. For instance, overexpression
of various GPCRs has been observed in a range of
primary and metastatic cancers, including head and
neck squamous cell carcinoma, non-small cell lung
cancer, breast, prostate, gastric tumors, melanoma,
and diffuse large B-cell lymphoma (28, 29).
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Various molecules such as hormones, lipids, peptides,
and neurotransmitters exert their biological effects
by binding to these seven-transmembrane receptors
coupled to heterotrimeric G proteins, which are
highly specialized transducers capable of modulating
multiple signaling pathways. Furthermore, many
GPCR-mediated responses do not rely on a single
biochemical route but result from the integration
of a complex network of transduction cascades
involved in various physiological activities and

A Expression of AGT in COAD based on Sample types
-

Expression of CALML3 in COAD based on Sample types

tumor development (30). The WNT pathway, a key
signaling cascade associated with cancer, is initiated
when WNT ligands bind to the G protein-coupled
Frizzled receptors, which subsequently associate
with the low-density lipoprotein receptor-related
proteins 5 and 6 (LRP5 and LRP6). In the presence
of WNTs, B-catenin translocates into the nucleus
and activates TCF/LEF transcription factors, thereby
regulating the expression of genes involved in cell
differentiation and proliferation (31, 32).
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Figure 3: The UALCAN platform was used to validate the expression of the 15 identified hub genes based on sample types (A) and
individual cancer stages (B). The transcription per million values for IL2 and FGF8 were extremely low (I).

The CXC family of chemokines and their receptors
are crucial for inflammation and antitumor immunity,
both of which are key factors in CRC progression.
These small proteins are secreted not only by tumor
cells but also by leukocytes, fibroblasts, endothelial
cells, and epithelial cells. They influence tumor
behavior by regulating angiogenesis, activating
tumor-specific immune responses, and directly
stimulating tumor proliferation through autocrine

http://colorectalresearch.sums.ac.ir/

or paracrine mechanisms. The CXC chemokines
and their receptors has also been associated with
metastasis and treatment resistance. Several studies
have reported the expression of CXC chemokines
and/or their receptors in tumors, whether in epithelial
tumor cells, fibroblasts, or infiltrating leukocytes
as well as in plasma or in plasma/serum samples
from CRC patients, withthis expression has been
associated with patient outcomes (33).
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Two chemokines, C-X-C Motif Chemokine Ligand
8 (CXCLS) and CXCLI12, and their roles in cancer
development have been well-studied. CXCLS,
an inflammatory cytokine, binds to CXCR/ and
CXCR?2 on neutrophils, activating G-protein and
B-arrestin-mediated signal transduction pathways,
whichultimately promote neutrophil chemotaxis
(34). Additionally, the binding of CXCLS to C-X-C
Motif Chemokine Receptor 1 (CXCRI) and C-X-C
Motif Chemokine Receptor 2 (CXCR2) induces
receptor internalization, primarily mediated by
[B-arrestins, leading to desensitization of G protein-
mediated signaling. This process results in receptor
degradation, recycling back to the membrane, or
initiation of additional MAPK or tyrosine kinase
signaling pathways (35).

CXCLI12 is a homeostatic chemokine that binds
to C-X-C Motif Chemokine Ligand 4 (CXCR4),
atypical chemokine receptor 1 (ACKR1), and atypical
chemokine receptor 3 (ACKR3), promoting the
migration and activation of hematopoietic progenitor
cells, endothelial cells, and various leukocytes.
Therefore, it plays an important role in regulating
embryogenesis, hematopoiesis, and angiogenesis
(36-38). Additionally, CXCLI2 has an inflammatory
function and is associated with CXCLS8 in this
context. Notably, CXCR4 is a GPCR, indicating the
significance of this pathway in cancer (36).

You-Chuan Xiao et al. demonstrate that a high
abundance of CXCLS is strongly correlated with
poor overall and disease-free survival in 186 patients
with CRC.

Angiotensin II type [ receptor (AGTRI) is a member
of the G protein-coupled receptor superfamily.
Upregulation of this gene has been observed in
related tumor tissues (39). Activation of AGTRI
by its ligand, angiotensin II, promotes a pathway
that ultimately promotes cell proliferation and
migration. Persistent triggers by angiotensin Il can
induce changes in downstream gene expression and
facilitate the phenotypic transition from epithelial-
to-mesenchymal transition (40).

The physiologically active enzyme angiotensin
II is involved in maintaining blood pressure, body
fluid balance, and electrolyte homeostasis, as well
as in the pathogenesis of essential hypertension and
preeclampsia. Dysregulated expression of its gene,
AGT, has been validated in CRC; suggesting that
AGT can be a potential biomarker for this tumor
(41). Wei Chen et al. confirmed the overexpression
of AGT in CRC tissues. Subsequently, a series of in
vitro experiments were conducted to evaluate the
potential role of AGT in the proliferation, migration,
and invasion of CRC cells (41).

The neuroendocrine peptide glucagon (GCG)
is implicated in CRC (42). Previous research has
demonstrated that aberrant GCG gene expression
distinguishes CRC tissue from hyperplastic polyps
with 100% sensitivity (42). In human colon cancer
cell lines, GCG activates its receptor, which leads to

58

cancer cell proliferation by affecting AMPK/MAPK
signaling pathways (43).

Somatostatin, an endogenous peptide hormone,
is a ligand for five types of somatostatin receptors
(SSTRs), which belong to the transmembrane GPCRs
superfamily. Decreased expression of somatostatin has
been observed in CRC compared to normal tissues,
suggesting an antitumor role for this peptide (44, 45).

DRD?2, a dopamine receptor characterized by a
seven-transmembrane structure, is another gene
belonging to the GPCR family. DRD2 couples with
the Gai/o family of G proteins, leading to a decrease
in cCAMP levels (46-48).

Conclusion

The identified hub genes involved in the GPCR
pathway highlight the significance of this pathway
in CRC. This study suggests that further in vitro
investigations of this pathway could validate the
findings.
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