
Ann Colorectal Res. 2016 December; 4(4):e43883.

Published online 2016 November 21.

doi: 10.17795/acr-43883.

Review Article

Permissive/Protective Interplay of Microbiota with T Cell Adaptive

Immune Response in Colon Cancer

Zahra Mojtahedi,1 Somayeh Rezaeifard,1 and Zahra Faghih1,*

1Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

*Corresponding author: Zahra Faghih, PhD, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Tel: +98-7132303687, Fax:
+98-7132304952, E-mail: faghihz@sums.ac.ir

Received 2016 November 14; Accepted 2016 November 15.

Abstract

Colon microbiota, as a complex and diverse population, has been shown to be either pro- or anti-tumorigenic, depending on its
content. The composition of microbiota critically determines the differentiation, activation, and expansion of T cells by which pro-
or anti-tumorigenic effects of microbes are frequently reported to be mediated. In this review study, we specified an imbalance in
microbiota and T cells in particular regulatory T cells and Th17 cells in colon cancer. We also aimed to discuss evidence, suggesting
the contribution of microbiota to carcinogenesis or anti-carcinogenesis through influencing T cells.
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1. Introduction

The immune system can be divided into innate and
adaptive immunity (1, 2). Innate immunity refers to de-
fense mechanisms, acting non-specifically after the ini-
tial appearance of an antigen in the body. These mecha-
nisms consist of physical barriers (e.g., skin and mucosal
surfaces), chemicals, and innate immune system cells, in-
cluding neutrophils, eosinophils, basophils, mast cells,
macrophages, dendritic cells, and natural killer cells (1, 2).

Adaptive immunity consists of two arms, i.e., humoral
immunity comprised of B cells producing antibodies and T
cell-mediated immunity. T cells are divided into two broad
subsets: cytotoxic CD8+ T lymphocytes and CD4+ T helper
(Th) cells with two main Th1 and Th2 cell subgroups (1,
2). Th1 cells produce interleukin (IL)-2, gamma-interferon
(IFNγ), and tumor necrosis factor-alpha (TNF-α). They also
express signal transducer and activator of transcription 4
(Stat4), Stat1, and T-box transcription factor.

CD4+ Th1 cells are part of a type-1 immune response
and are involved in priming and expanding cytotoxic CD8+
T cells. A Th1 immune response is mainly related to im-
munity against intracellular microbes and cancer. On the
other hand, CD4+ T cells, differentiating into Th2 cells, ex-
press GATA3 and Stat6 and produce more IL-4, IL-5, and IL-13.
In addition, CD4+ Th2 cells are part of a type-2 immune re-
sponse, i.e., a type of immunity which is mainly involved in
the removal of helminthes and extracellular parasites and
facilitates B-cell antibody secretion (3-5).

Recent studies have progressively revealed the role of
recently recognized CD4+ subsets, i.e., Th17 cells and T

regulatory cells (Tregs), in immunity, particularly at mu-
cosal surfaces where large and diverse numbers of mi-
crobes (also known as microbiomes) reside (5, 6). Th17
cells, as an inflammatory subset of CD4+ cells, are the main
source of IL-17A, IL-17F, and IL-22 (7). These cells are most
frequently found in the gastrointestinal tract, especially
in the intestinal lamina propria. Tregs play a critical role
in the maintenance of immunological self-tolerance and
immune homeostasis at sites of inflammation, especially
mucosal surfaces (8, 9). TGF-β and IL-2 are two crucial cy-
tokines, which are involved in the differentiation of naïve
T cells from Treg cells. Tregs express fork-head lineage-
specific transcription factor (FoxP3) proteins and are able
to secrete immunomodulatory cytokine, IL-10 (10). In ad-
dition to an imbalance in Th1/Th2 cells, a dysregulated im-
mune response, related to Th17 and FoxP3+ Tregs, has been
linked to certain types of cancer, particularly colon cancer
(3-5).

Colon carcinoma is among the leading causes of
cancer-related death throughout the world, with a rising
incidence rate in recent years (11). Colon is the site where
the greatest density and number of microbes can be found.
Colon cancer may be one of the major types of cancer re-
garding the interplay between the immune system and mi-
crobes, as it develops in the presence of gut flora, as well
as myeloid and lymphoid cells, which induce and produce
pro-inflammatory cytokines (12).

It is well documented that microbes play a pivotal
role in both cancer formation/progression and/or preven-
tion/regression, depending on the host model, microen-
vironment, and infectious elements (12-14). As well rec-
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ognized in previous reviews, contribution of microbiota
to cancer could be mediated through a variety of mech-
anisms, such as chronic inflammation, innate immunity
(e.g., macrophages and dendritic cells), and DNA damage
(6, 15). One of these mechanisms, which has been less re-
viewed, is the interplay between T-cell adaptive immune re-
sponses and microbiota. In this review study, we specified T
cells and their effector subsets, as well as microbiota in the
colon. We also aimed to discuss evidence on how micro-
biota contributes to carcinogenesis or anti-carcinogenesis
through influencing T cells.

2. T Cells andMicrobiota in the Colon

Body surfaces, e.g., intestinal and respiratory mucosa
and skin, are colonized by a vast number of microorgan-
isms (either helpful or pathogenic), which represent the
so-called microbiota. Five dominant species of intestinal
microbiota in normal adults are Firmicutes, Bacteroidetes,
Actinobacteria, Proteobacteria, and Verrucomicrobia (6, 15,
16). However, intestinal microbiota can be influenced by
a variety of factors, such as diet (17, 18), acute or chronic in-
flammation, and antibiotics (19-21).

Approximately 70% of the human microbiota is com-
posed of bacteria which cannot be cultivated by cur-
rent microbiological methods, and only genomic next-
generation sequencing analysis has been successfully em-
ployed in their characterization (17, 22). According to the
literature, microbiota has a substantial influence on the
host’s immune responses and differentiation of various
types of T cells (23).

It has been previously shown that the number of T cells
remarkably decreases in germ-free mice (mice without in-
testinal microbiota), suggesting that T cells accumulate
following recruitment by bacterial materials (23-25). The
specificity of these cells is not known at present, although
it seems that many of them are probably exclusive to com-
mensal microbiota and the products to prevent damage
caused by pathogens or toxins (22).

Based on recent studies, the content of microbiota
substantially shapes the balance of Treg/Th17 cells (26). A
notable microorganism in human colonic microbiota is
Bacteroides fragilis, which has been linked to the develop-
ment of FoxP3+ Tregs and suppression of inflammation
in the gut. According to the literature, monocolonization
of germ-free animals with this bacterium significantly en-
hances the number and suppressive activity of Tregs, thus
inducing the production of IL-10 while decreasing Th17
responses (27). Further analysis indicated that polysac-
charide A (PSA), an immunomodulatory molecule of Bac-
teroides fragilis, is the component responsible for the aug-
mentation of Foxp3+ Tregs and production of IL-10. Inter-

estingly, researchers showed that PSA is not only able to
prevent, but also treat experimental colitis in animals (27,
28).

There are some pathogenic bacteria which favor the
induction of Th17 cells rather than Tregs. For instance,
Th17 cells become abundant in the colon of mice upon col-
onization with some specific bacteria or their products,
especially segmented filamentous bacterium (SFB), which
is a component of Clostridia-related species, and flagellin-
positive bacteria. The difference in IL-17 and IL-22 produc-
tion has been only observed in Th17 cells, not IL-17 or IL-22,
which produce innate immune cells; this suggests the spe-
cific effect of SFB on the differentiation and/or recruitment
of Th17 cells (29-31).

It has been also shown that Th17 response is important
for protection against mucosal pathogens, such as Kleb-
siella pneumonia (32), Salmonella typhimurium (33), and Cit-
robacter rodentium (29). Mice deficient in Th17 cells show
serious pathology during infection with these pathogens
and demonstrate increased translocation of bacteria into
lymph nodes (29).

3. Microbiota in Favor of Tumorigenesis

There are not many well-documented reports to con-
firm the association between a single microbe and cancer.
Nevertheless, some studies have revealed the relationship
between gastric cancer and Helicobacter pylori (34), cervi-
cal cancer and human papillomavirus (35), bladder can-
cer and Schistosoma haematobium (36), bile duct cancer and
Clonorchis sinensis and Opisthorchis viverrini (37), and finally
liver cancer and hepatitis B and C viruses (38, 39).

There is a general consensus regarding the contribu-
tion of multiple members of colonic bacterial/microbial
community to the induction of tumor formation and pro-
gression in colon cancer (40-42). In general, contribution
of microbiota to tumorigenesis has been demonstrated in
a number of colon cancer animal models in a germ-free
environment. Also, its influence on treatment with broad-
spectrum antibiotics for the elimination of all microorgan-
isms in the gut has been revealed.

Vannucci et al. investigated tumor development and
growth in a rat model of colorectal cancer in a germ-free
environment and compared the results with a similar rat
model under regular conditions and normal colonic mi-
crobiota. As the results indicated, cancer developed in 50%
of germ-free mice, while its incidence was approximately
80% in mice kept under regular conditions (43).

The higher risk of cancer in germ-free colon cancer
models compared to their normal microbiota counter-
parts has been illustrated in several studies in both ge-
netically modified and chemically induced colorectal can-
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cers (44, 45). Depletion of all gut microorganisms by
broad-spectrum antibiotics in animal models predisposed
to colon cancer is another example of experiments, analyz-
ing the association between whole microbiota and colon
cancer. In general, antibiotic treatment of mice signif-
icantly decreases tumor formation and progression (46,
47).

There are studies on colon cancer linking a single bac-
terium, e.g. Fusobacterium nucleatum, to colon cancer (48,
49). Mima et al. measured the amount of this bacterium in
colorectal carcinoma tissues via quantitative polymerase
chain reaction assay. They found that Fusobacterium nuclea-
tum was positive in 13% of tumor tissues and 3.4% of ad-
jacent non-tumor tissues (49). Other investigations have
attempted to find a relationship between a group of bac-
teria and colon cancer rather than microbiota as a whole
or single bacterium. Sears and Pardoll first proposed the
“alpha-bug hypothesis”, which integrates the single mi-
crobe and microbiome community views of microbial car-
cinogenesis (40). This hypothesis suggests that certain
microbiota members, such as enterotoxigenic Bacteroides
fragilis, Streptococcus gallolyticus (also known as Streptococ-
cus bovis), superoxide-producing Enterococcus faecalis, and
Escherichia coli, can be pro-tumorigenic (40).

There are plenty of mechanisms which link microbiota
to tumorigenesis, including DNA damage and genome
instability, alterations of mucosal permeability (facilitat-
ing the translocation of bacteria or their toxins, e.g.,
lipopolysaccharides), replacement of anti-cancer colonic
bacteria with pathogenic ones, and deviation of the im-
mune response (both innate and adaptive immunity) to a
pro-tumorigenic one (6, 40, 47-49).

3.1. Microbiota in Favor of Tumorigenesis Through T Cells

An aberrant immune response against intestinal flora
antigens is thought to be associated with several patho-
logical conditions of the colon, ranging from inflamma-
tory bowel diseases, such as Crohn’s disease, to cancer (23,
50, 51). Emerging evidence suggests that in the majority
of colon cancer cases, the cause of aberrant immune re-
sponse is intestinal flora or an antigen rather than a pri-
mary defect in the immune system (12, 50).

An effective anti-tumor immune response is generated
by both CD4+ and CD8+ T cells and their interactions;
also, CD4+ Th1 cells induce tumor-specific CD8+ T cells (52-
54). As the study of human colon cancer samples has con-
firmed, Th1 adaptive immunity and presence of tumor-
specific cytotoxic CD8+ cells are associated with better clin-
ical outcomes and less tumor recurrence (55, 56). On the
other hand, experimental animal models have presented
firm evidence indicating the influence of microbiota on
tumor-specific CD8+ T cell responses (46).

Additionally, Bhattacharya et al. investigated the men-
tioned association in a mouse model of colon cancer with
deficiency in colonic all-trans-retinoic acid. The authors
showed that all-trans-retinoic acid supplementation could
reduce the tumor burden in these mice. According to the
findings, the advantage of all-trans-retinoic acid treatment
was mediated by cytotoxic CD8+ T cells, which were acti-
vated due to major histocompatibility complex class-I up-
regulation (CD8 ligands) by all-trans-retinoic acid on tu-
mor cells (46).

Consistent with the abovementioned findings, in-
creased colonic expression of all-trans-retinoic-acid-
catabolizing enzyme, CYP26A1, was found to be correlated
with the reduced frequency of tumoral cytotoxic CD8+ T
cells and poor disease prognosis. Researchers finally illus-
trated that pretreatment with broad-spectrum antibiotics,
which deplete the whole microbiota, completely prevents
all-trans-retinoic acids in this mouse model. Interest-
ingly, human colon cancer specimens have also shown
deficiency in all-trans-retinoic acid, similar to the animal
model (46). Nevertheless, further investigation is required
to determine if this deficiency in human colon cancer is
related to microbiome and whether it can be reversed by
all-trans-retinoic acid supplementation towards a better
immune response and prognosis.

The classical Th1/Th2 immune response pattern has
been challenged by the identification of Tregs and Th17
cells, giving way to a new era presenting the additional
involvement of CD4+ T cells in anti-tumor immunity (57,
58). According to the literature, in most types of cancer,
Treg cells increase in the peripheral blood, accumulate in
lymph nodes and tumor tissues, and take part in immuno-
suppression and inhibition of efficient anti-tumor immu-
nity (59-61). However, regarding colon cancer, more data is
available supporting an opposite hypothesis which consid-
ers a protective role for Tregs. In fact, it has been suggested
that Tregs prevent cancer by inhibiting bacteria-driven in-
flammation (62, 63).

Enrichment of Th17 cells in the peripheral blood and
tumor samples from colon cancer patients has been con-
firmed in more recent studies (7). In other types of can-
cer, association of Th17 cells with tumor immunity remains
controversial, as both pro-tumor and anti-tumor effects
have been reported (59, 60, 64, 65). The stronger contri-
bution of increased Th17 cells and decreased Tregs to colon
cancer compared to other cancer types again confirms the
inflammatory cause of colon cancer.

Certain microbes could induce Th17 response and sup-
press Treg cells; through this mechanism, these microbes
might be pro-tumorigenic in colon cancer. Stimulation of
tumor growth by bacteria is clearly linked to Th17 cells,
based on the study of enterotoxigenic Bacteroides fragilis, a
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causative microbe for human inflammatory diarrhea; this
pathogenic bacterium secretes B. fragilis toxin. Also, ani-
mal models have linked colonization with enterotoxigenic
B. fragilis to colon cancer, but not non-toxigenic B. fragilis
(66). B. fragilis stimulates the production and activation of
STAT3, characterized by a selective Th17 response; in fact,
blockage of IL-17 prevents colonic hyperplasia and tumor
formation in these mice (66).

IL-17A signaling can be tumorigenic through several
pathways (7, 67, 68). IL-17A induces mitogen-activated pro-
tein kinase (MAPK) and NFκB signaling, the key pathways
related to the production of pro-inflammatory cytokines.
In the IL-17A-deficient colon cancer mouse model, lower
levels of IL-6, STAT3, IFNγ, and TNF-α were expressed and
smaller tumors were produced, compared to wild-type
mice. Moreover, IL-17A-deficient mice showed decreased
numbers of β-catenin positive cells within the intestinal
crypts, in addition to reduced key cell cycle regulators, e.g.,
cyclin D1, indicating a role for IL-17A in tumor progression,
as well as tumor formation (67).

Th17 cells produce other cytokines, such as IL-22, which
has been associated with carcinogenesis through the stim-
ulation of STAT3 activation and MAPK family members (69,
70). Similar to IL-17A, Jiang et al. also showed that high lev-
els of IL-22 promote the growth of human colon cell lines,
transplanted into immunodeficient mice; they found that
this effect was mediated by STAT3 activation and cyclin D1
(71).

4. Microbiota Contribution in Favor of Tumor Protec-
tion

Contribution of microbiota as a health-promoting fac-
tor is best exemplified by the administration of probiotics,
a group of live microorganisms which are shown to be ben-
eficial for the host (72). Disorders ranging from inflam-
matory diseases to several types of cancer, including colon
cancer, are believed to benefit from probiotics (72, 73). In
fact, a combination of microorganisms seems to act much
more efficient than a single microorganism. Strains of lac-
tic acid bacteria, particularly Lactobacillus and Bifidobac-
terium species, are commonly added as probiotics to dairy
products such as yogurt (72).

Another example of microbiota contribution to pro-
tection against colorectal cancer is the positive effect of
short-chain fatty acid butyrate (produced by non-absorbed
carbohydrates through colonic microbiota) on the pre-
vention and inhibition of colorectal cancer (74). Short-
chain fatty acids (SCFAs), predominantly acetate, propi-
onate, and butyrate, are the main metabolites produced
during the catabolism of carbohydrates (75). Multiple
mechanisms have been suggested, relating microbiota to

colon cancer protection. These mechanisms include alter-
ation of microbiota content, induction of epithelial cell
apoptosis, reduced bacterial translocation, improved ep-
ithelial defense barrier, modulation of mucosal inflamma-
tion, oxidative status, and shift of T cells towards an anti-
tumor phenotype (72, 74, 76).

4.1. Microbiota Contribution in Favor of Tumor Protection
Through T Cells

B. fragilis is among intestinal resident microbiotas,
inducing Treg differentiation and immune homeostasis
(26). In this regard, Dwivedi et al. reviewed mechanisms
through which probiotics induce Treg cells: i) inhibition
of dendritic cell (DC) maturation and activation of tolero-
genic DCs; ii) probiotic-induced activation of FoxP3, TGF-
β, cytotoxic T lymphocyte antigen-4, and IL-10, as Treg-
associated molecules; and iii) stimulation of toll-like recep-
tors (TLRs), expressed on gut lymphoid and epithelial cells
by probiotic ligands which are involved in Treg induction
(77).

A recent study also reported Treg polarization from
Th0 by heat-killed probiotic Lactobacillus casei Lbs2 (78).
In addition, SCFAs, PSA production by specific probiotic
species, and microbial metabolites (generated through
food digestion) have been introduced to be involved in
Treg induction by probiotics (77). Lactobacillus acidophilus,
Bifidobacterium bifidum, and Bifidobacteria infantum admin-
istration in a rat model of colon cancer was also reported to
exert anti-cancer effects through TLR2 signaling (14). There-
fore, Treg activation by probiotics has been delineated as
one of the triggered mechanisms to suppress abnormal in-
flammation and subsequent complications, including col-
orectal cancer (77, 78).

5. Conclusion

In conclusion, microbiota is believed to have the po-
tential to provide a pro- or anti-tumor microenvironment.
These vast colonies of microorganisms act through several
mechanisms to exert such properties; their effects on T
cells seem a major factor in this respect. Administration of
probiotics aimed at shifting the immune system response
towards an anti-tumor phenotype is a practical example,
suggesting the importance of information about micro-
biota.
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